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Stochastic Reduced Basis Methods
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University of Southampton, Southampton, England SO17 1BJ, United Kingdom

Stochastic reduced basis methods for solving large-scale linear random algebraic systems of equations, such
as those obtained by discretizing linear stochastic partial differential equations in space, time, and the random
dimension, are introduced. The fundamental idea employed is to represent the system response using a linear
combination of stochastic basis vectors with undetermined deterministic coefficients (or random functions). We
present a theoretical justification for employing basis vectors spanning the preconditioned stochastic Krylov sub-
space to approximate the response process. Subsequently, variants of the Bubnov-Galerkin scheme are employed
to compute the undetermined coefficients, which allow explicit expressions for the response quantities to be de-
rived. We also examine some theoretical properties of the projection scheme and procedures for computing the
response statistics. Numerical studies are presented for static and dynamic analysis of stochastic structural sys-
tems. We demonstrate that significant improvements over the Neumann expansionscheme, as well as other relevant

techniques in the literature, can be achieved.

I. Introduction

HE equations governing the physics of many complex systems

can be described by ordinary or partial differential equations
(PDEs). A wide body of numerical methods based on finite differ-
ences, finite elements, and boundary elements are available in the
computational mechanics literature to solve the governing equa-
tions approximately for the response quantities of interest. Over the
last 50 years, significant progress has been made in the theoretical
groundwork of these methods for cases when a system is modeledin
a deterministic framework and when a deterministic linear system
is subjected to random excitation.

By contrast, the use of probabilisticmodels for the system param-
eters leads to a significant increase in the problem complexity. This
is primarily due to the difficulties in arriving at tractable descrip-
tions of the system response in terms of the stochastic differential
operators and the random excitation fields. Exact solutions to this
class of problems are possible only under restrictive assumptions for
simple problems (for example, Elishakoff et al.!). In the context of
stochastic analysis of large-scalesystems of practical interest, most
research work has focused on computationally efficient methods
thatallow the response statisticsto be approximated with reasonable
accuracy.

The approachesin the literature can be broadly classified into dif-
ferentcategories,dependingon how the system parameters are mod-
eled (random field or random variables), the scheme used for dis-
cretizing the random fields, the linearization techniques employed
to simplify the nonlinear terms, the spatial and temporal discretiza-
tion scheme, and the algorithm used to solve the resulting random
algebraic equations. The interested reader is referred to the mono-
graphs of Ghanem and Spanos? and Kleiber and Hien? for a detailed
exposition of computational stochastic mechanics.

Monte Carlo simulation (MCS) techniques4 and response surface
methodology (RSM)® have been widely applied to a variety of prob-
lems in this area. These approaches are quite general in scope and
utilize existing deterministic analysis software. However, due to the
requirement of many deterministic simulations, they are practical
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only for problems where deterministic analysis takes modest com-
putational effort. Local approximation methods based on Taylor or
Neumann expansion series have also been popularly used in the
stochastic finite element literature (for example, Refs. 3, 6, and
7). These methods are computationally more efficient compared to
MCS and RSM. However, local approximation methods give accu-
rate results only for small coefficients of variation of the random
system parameters.

A spectral stochastic finite element method (SSFEM) was pro-
posed by Ghanem and Spanos®® for linear stochastic PDEs. In this
approach, the random fields describing the PDE coefficients are
discretized using the Karhunen-Loeve expansion scheme. Subse-
quently,a finite elementprocedureis used to derivea system of linear
random algebraic equations, which is then approximatelysolved us-
ing the Neumann expansion scheme. An alternative approach was
also proposed, wherein each component of the solution vector is
represented by the polynomial chaos decomposition with unknown
coefficients. By the use of the Bubnov-Galerkin scheme, a system of
deterministiclinear algebraic equations (with increased dimension-
ality proportional to the number of terms in the polynomial chaos)
was obtained for the unknown coefficients. The reader is referred to
Ghanem’ for a recent review of the mathematical background and
implementation aspects of the SSFEM.

More recently, Elishakoff et al.!° and Ren and Elishakoff!! have
focusedon finite element analysis of structures with large stochastic
variations. The key idea has been to develop approaches that do not
use perturbationschemes. An excellentdiscussionon the motivation
for this and further work in the area of stochastic finite element
analysis can be found in the work of Elishakoff and Ren.!?

The present paper is concerned with the analysis of systems gov-
erned by linear stochasticPDEs. In particular,we introducea class of
efficientnumerical schemes for solvinglarge-scalelinearrandomal-
gebraicsystems of equations,such as those obtainedby discretizing
linear stochastic PDEs in space, time, and the random dimension.
The fundamental idea proposed here is to represent the response
process using a linear combination of stochastic basis vectors with
undetermined coefficients. The undetermined coefficients are either
considered as deterministic scalars or random functions. Methods
based on this representation, where the number of undetermined
coefficients is less than the dimension of the discretized PDE, are
referred to as stochastic reduced basis methods (SRBMs) in this
paper. In contrast, in the projection scheme proposed by Ghanem
and Spanos,’ the basis vectors are considered to be unknown, which
leads to a system of equations with increased dimensionality.

We discuss the choice of basis vectors, with a particular empha-
sis on the preconditionedstochastic Krylov subspace. A theoretical
justification for employing the terms of the stochastic Krylov sub-
spaceas basis vectorsis outlined.Efficientproceduresfor computing
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the basis vectors are presented, particularly for stochastic struc-
tural dynamic analysis. Subsequently, we employ two variants of
the Bubnov-Galerkin scheme for computing the undetermined co-
efficients in the stochastic reduced basis representation. In the first
procedure, the undetermined coefficients are considered as deter-
ministic scalars. The second procedure deals with the case when
only two or three basis vectors are used. Hence, it becomes pos-
sible to treat the reduced basis coefficients as random functions,
which ensures that the stochastic residual error is orthogonal to the
approximating space of basis vectors with probability one. Both of
these projectionschemes allow explicitexpressionsfor the response
quantities to be derived, which enables us to compute its complete
probabilistic description efficiently. We also briefly discuss some
theoretical properties of the stochastic Bubnov-Galerkin scheme.

Numerical studies on some problems in structural mechanics are
presented to demonstrate that high-quality approximations of the
response statisticscan be achieved for moderate to large coefficients
of variation of the random system parameters. In particular, it is
shown that SRBMs can be up to orders of magnitude more accurate
than the Neumann expansion scheme. Our results also suggest that
SRBMs give results that are comparable to or better in accuracy
than the polynomial chaos scheme at a much lower computational
cost.

This paperis organizedas follows: SectionII presents some math-
ematical preliminaries used in the paper. In Sec. III, we present
a theoretical justification for employing basis vectors spanning
the preconditioned stochastic Krylov subspace. We also outline
an efficient scheme for computing the basis vectors for stochas-
tic structural dynamic analysis problems. Stochastic variants of the
Bubnov-Galerkin scheme and its theoretical properties are pre-
sentedin Sec.IV.In Sec. V, we examine the computationalproperties
of SRBMs, including procedures for computing the response statis-
tics. Numerical studies on static and dynamic analysis of stochastic
structuralsystems are summarizedin Sec. VI. Section VII concludes
the paper and discusses some directions for further research.

II. Preliminaries

We use the following notation throughoutthis paper. For the sake
of generality,all of the vector spaces consideredare complex, unless
otherwise stated. We use the notation R"*" and C" ™" to refer to
the space of n x n real and complex matrices, respectively. Random
quantities are indicated explicitly as a function of @ or 7, and the
ensemble averageis denoted with angle brackets. We denote vectors
and matrices by lower case and upper case bold characters, respec-
tively. The notation x* is used to denote the complex conjugate
transpose of a vector or matrix (if it is complex), or the transpose
(if it is real).

Next, we outline the steps involved in discretization of linear
stochastic PDEs in space and the random dimension on the lines
presented earlier by Ghanem.” The objective is to derive a general
expression for the discretized finite dimensional random equations,
which sets the stage for the developmentof SRBMs. For illustration,
we consider a linear stochastic PDE of the form

,Z—l;t[u(x7t70717)]+£ﬁ[u(x7t70717)]=f(x7t717) (1)

wherex € R? or R? refers to the spatial coordinates,u(x, t, 8, n7) de-
notes the field variable, t € R refers to time, and 0, n € Q belongs
to the Hilbert space of random variables. 7, and L4z denote linear
stochastic differential operators. These operators have coefficients
a(x, 8) and B(x, ), which are considered to be second-orderran-
dom fields. Here, f(x, t, 1) denotes the random excitation field for
which a solution u(x, t, 8, ) is sought.

The random fields in Eq. (1) can be readily discretized to rep-
resent them in terms of a finite number of random variables using
any of the techniques in the literature>!3 Let us consider, for the
sake of simplicity, that the random fields appear as multiplicative
terms in the differential operators. Hence, spatial discretization of
the stochasticPDE and applicationof the appropriateboundary con-
ditions lead to a matrix system of random differential equations. For
example, for a linear structural system, we obtain a matrix system
of second-orderrandom differential equations of the form

M(®)ii(t,0,n) + CO)u(t, 0,n) + K®O)u(, 6,n)

q
=0+ Y nfi0) @)

i=1

where

p
M®) =M, + ) _ 6M R~

i=1

[7
K@©) =K, + ) 6K cR"*"

i=1

denote the random mass and stiffness matrix, respectively, where
M, M; K, and K; € R"*" are deterministic matrices, and where
n is the total number of degrees of freedom (DOF). C(8) e R"*"
denotes the random damping matrix, which we will consider to be
proportional [i.e., C(0) =, K(0) + ;M (0)], where ¢, and &, € R
are deterministicscalars. Here, f, () and f; (¢) € R" are deterministic
vectors.Also,0 ={6;},i=1,2,..., pandn={n;},i=1,2,...,q,
denote the vectors of random variables arising from discretizationof
the random fields describingthe system properties and the excitation
field, respectively. Finally, u(z, 6, ) € R" denotes the discretized
vector of displacements.

Clearly, for static problems, Eq. (2) will reduce to a system of lin-
ear random algebraic equations. Similar sets of equations could be
arrived at for time-dependent problems by transforming the equa-
tions to the frequency domain, which leads to a system of complex
linear random algebraic equations. As shown in a recent study,'*
a system of linear random algebraic equations can also be arrived
at when the implicit Newmark scheme is used for computing the
response in the time domain. Hence, without any loss of generality,
we may represent the resulting system of linear random algebraic
equations as

p q
L+ 6L fu@m=f+Y nf 3)

i=1 i=1

where L and IT; e R"*" are deterministic matrices, f, and f; € R"
are deterministicvectors,andu (@, n7) € R" is the stochasticresponse
process. In other words, a solution methodology for Eq. (3) can
be directly applied to static and dynamic response analysis of lin-
ear stochastic structural systems, as well as a wider class of linear
stochastic PDEs.

For cases when the system parameters and external forces are
modeled as random variables, Eq. (3) can be derived by expanding
the global coefficient matrices using a first-order Taylor series and
appropriately representing the random forces. Note that this repre-
sentation is exact when the coefficient matrix is a linear function
of the random system parameters, for example, when the Young’s
modulus of a beam member is modeled as a random variable. Al-
ternatively, the polynomial chaos decomposition scheme? can be
employed to expand each term of the coefficient matrix and the
force vectorusing a series of orthogonalrandom polynomials. Then
the random variables 6; and n; become orthogonal random polyno-
mials. Even though the formulations that follow assume a random
variablerepresentation,it can be readily extendedto casesinvolving
expansionin terms of random polynomials.

In the sections that follow, the coefficient matrix of Eq. (3)
will sometimes be denoted by the matrix A (). This implies that
(A(8)) =L, and the term

)4
> oIl

i=1
denotesthe zero-meanrandom componentsof the matrix A (8). Sim-
ilarly, the right-hand side (RHS) of Eq. (3) will sometimes be com-
pactly written as f (7).

III. Stochastic Basis Vectors

In this section, we present the basic idea behind SRBMs. We
briefly outline why the stochastic Krylov subspace is appropriate
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for computing the solution of Eq. (3). Then we describe a recursive
scheme for computing basis vectors spanning the preconditioned
stochastic Krylov subspace. Particular attention is paid to efficient
schemes for basis vectors computation in stochastic structural dy-
namics. To proceed, let us first compactly rewrite Eq. (3) as

A(@)u(0,m) =f(n) )

where A(0) € €C"*" is a random matrix and u(@, ) and f(n) € C"
are random vectors. Also, @ € R” and i € R? denote the vector of
random variablesin the coefficient matrix and the RHS, respectively.
Note that, for the sake of generality, the coefficient matrix and the
RHS are considered here as complex quantities. Henceforth, for
simplicity of presentation,all random quantities (except for the RHS
f) will be denoted as a function of 8. The dependence on the random
vector i) will not be shown explicitly.

The fundamentalideaused in this paperis to representthe solution
of Eq. (4) as

w(6) = £(0)Yy(6) + £ (0),(6) + - -- +£,(0),,(6)
= ¥(0)£(0) ®)

where W(0) = [1,(0), ¥,(0), ..., 1, (0] C"*"*P denotes a
matrix of m + 1 stochastic basis vectors and £(0) = {£,(0), &,(8),
.., E0(0)) € €T denotes the vector of undeterminedcoefficients
in the reduced basis. Note that for the sake of computational effi-
ciency we will choose m < n.

Clearly, along with the number of terms, the accuracy of the
stochastic reduced basis representation will depend on the quality
of the basis vectors as well as the scheme employed to compute the
undetermined coefficients in Eq. (5). We discuss next which basis
vectorsare appropriate for approximatingthe solution processu ().

A. Properties of the Stochastic Krylov Subspace

In this section, we show that the solution of Eq. (4) lies in the
stochastic Krylov subspace. The analysis presented in this section
follows from the theoretical results outlined by Ipsen and Meyer!®
for deterministic systems of equations. More specifically, we con-
sider the problem where, given a nonsingular random square ma-
trix A(0), it is required to compute the vector A(8)~' f(n). Let us
first introduce the notion of the minimal polynomial of a random
matrix. For a random matrix, the minimal polynomial g can be de-
fined as the unique monic random polynomial of smallest degree
such that g[A(0), 8] =0. We assume that the matrix A(8) is di-
agonalizable and that its d distinct eigenvalues can be written as
21(0), 12(0), ..., Aq(0). Then, it follows that

d
q[A(a), 0] = H[A(G) — Aj(a)l]ml 6)

j=1

where m; denotes the index of the jth eigenvalue,and

d
ng mj

j=1

From Eq. (6), the minimal polynomial of A (@) can be written as

ql1A(0). 6] =) y,(0)A(8) =0 (7)
j=0
where the term
d
w® = [ J1-%,@1" #0
j=1
for any realization of 6 because we have assumed that the random

matrix A (@) is nonsingular.Hence, the inverse of A (@) canbe written
as

m—1

AB) ' =——— "y, 1(OA®) ®)
j=0

Y0(0)

It can be clearly seen from the preceding equation that the inverse
of a nonsingular random matrix lies in the space spanned by the
terms of the minimal random polynomial. This implies that the vec-
tor A(0)~'f(n) belongs to the stochastic Krylov subspace defined
hereafter.

Definition 1: The stochasticKrylov subspace of orderm is defined
as

KnlA©),f(m)]
= span{f(1), A f (1), A0 f(m), ..., A0)" "' f(m)}

where A(0) € €" ™" is a random matrix, and f(n) € C" is either a
deterministic or a random vector.

The dimension of the Krylov subspacerequired to compute high-
quality approximations will depend on the degree of the minimal
polynomial of the random matrix. This observationcan be formally
stated as follows.

Theorem 1: If the minimal random polynomial of a nonsin-
gular random square matrix A(@) has degree m, then the solu-
tion to A(@)u(6) = f(n) lies in the stochastic Krylov subspace
K.a[A®), f()].

Hence, in principle, KC,,[A(0), f(n)] provides a stochastic sub-
space, by the use of which an approximation for the random vector
A(0)~!f(n) can be computed. However, Theorem 1 implies that in
practice a large number of basis vectors would be required to com-
pute accurate results because for many cases we expect the degree
of the minimal polynomial m to be close to n. To achieve accurate
results using few basis vectors, we need to transform the coefficient
matrix A(0) such that the probability density functions (PDFs) of its
eigenvalues show a high degree of overlap. Thus, from a numerical
viewpoint, the degree of the minimal polynomial of the transformed
coefficientmatrix will be much smallercomparedto n. We show next
how this can be achieved by employing a preconditioning scheme.

B. Preconditioned Stochastic Krylov Subspace

Based on the preceding discussion, a straightforward choice of
basis vectors would be the mth-order stochastic Krylov subspace
K..[A(0),f(n)]. This suggests that the stochastic basis vectors can
be computed as

’lrbU =f(77)7 ’lrbl =A(0)f(17)7 BN ’lrbm—l =A(0)m_1f(77)

)

However, as mentioned earlier, the number of stochastic basis vec-
tors required to compute accurate approximations of the solution
vector could be as high as n. For the sake of computational effi-
ciency, it is desirable to use only a small number of basis vectors. In
order to arrive at a richer stochastic subspace, we employ a precon-
ditioningapproachto transformthe coefficient matrix. In the present
study, we choose the deterministic matrix {(A(0))~! = L~! as the
preconditioner. (A good choice of preconditioning matrix M is one
for which MA 1is close to an identity matrix or a matrix with highly
clustered eigenvalues.) This choice of the preconditioning matrix
would reduce the degree of the minimal polynomial of the trans-
formed coefficient matrix. In other words, because the eigenvalues
of L~'A(0) will be clustered aroundunity for small stochasticity, the
PDFs of its eigenvalues will have a high degree of overlap. This, in
turn, would allow us to compute high-quality approximationsusing
a small number of basis vectors.
The left preconditioned version of Eq. (4) can be written as

L'A@u(®) = L' f(n) (10)

Note that the solutions of Egs. (10) and (4) are the same. Before pro-
ceeding further, we shall briefly illustrate the relationship between
the left preconditioned stochastic Krylov subspace (when L™! is
used as a preconditioner) and the Neumann series given hereafter,

() = iHY (L-‘ ifm) L (fo + Xq: mﬁ-) (1
i=0 i=1 i=1

By the use of the analysis presentedin a recent study,'¢ it can shown
that for this particular choice of the preconditioner, the terms of the
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Neumann series also span the left preconditioned stochastic Krylov
subspace, that is,

p
KulL"'A@). L] = K, | L' Y _6TL.L7'fm) | (12)

i=1

The implication of the preceding result is that using the precondi-
tioner L~! is equivalentto using the terms of the Neumann series as
stochasticbasis vectors. It can be readily seen that each basis vector
in the preconditioned stochastic Krylov subspace (except for the
first one) can be written as a vector of homogeneous random poly-
nomials. To simplify our notation, we shall now adopt the Einstein
conventionthat whenever the same index appearstwice in an expres-
sion, summation with respect to that index overits range is implied.
The first three basis vectors can be explicitly written as a function
of @ and 1) as

Py (@) =L7'f, + nL7'f; (13)
¥,(0) =06,(b] +n;c);) (14)
’lﬁz(@) = 9[191'2 (b[21[2 + ’7[36[21[2[3) (15)

where b =L~'ILL7'f,, c[‘j =L'ILL'f;, b[zll.2 =L"'TL, L'
.H,-.ZL_lfo, and ¢}, =L'IL, L7'II,L7'f;, € C" are determin-
istic vectors.

A general expression for the kth stochastic basis vector can be
written as

k k
P (0) = 0,6, ..., 0y, (b[l[g ..... o T N1 Ciyi, zHl) (16)
k 71 -1 -1 -1 k
where b}, =L IL, L-'IT,, ..., L7'IL, L7'f, and <
=L'IL,L7'IL,,...,L7'II, L7'f;,,, €C" are deterministic
vectors.

Because the matrices L and IT; are expected to be highly sparse,
the deterministic tensors b* and c¢* can be efficiently computed in a
recursive fashion by solving the deterministic system of equations
— k k+1
= Hk+lb[1[2 ik Lc[][')

k
..... 2,k 42 i

i1, k41

an

Lbllc-f—l

10250k 41 =TII; ¢

If the decomposed form of the matrix L is available, then Eq. (17)
can be readily solved using forward and backward substitutions.
However, note that computation of the higher-order basis vectors
spanning the preconditioned stochastic Krylov subspace inevitably
leads to an exponential increase in memory requirements, which
could potentially become prohibitive for systems with a large num-
ber of DOF and random variables. One way to reduce the memory
requirements would be to neglect the interaction terms in the ba-
sis vectors of order greater than two. For example, the fourth basis
vector may be rewritten as

P3(0) = 953 (b? + ch?j) (18)

where b} =L 'ILL-'ILL'ILL™'f, and cfj =L 'TLL'T],
L~'ILL™'f; € C" are deterministic vectors. By the use of the sim-
plified basis vectors of the form shown in Eq. (18), the memory re-
quirements and the computational complexity can be significantly
reduced. However, in the numerical studies presented here, we ex-
actly compute the terms of the preconditioned stochastic Krylov
subspace without resorting to any simplification.

C. Basis Vectors for Stochastic Structural Dynamics

The procedure described earlier cannot be efficiently applied to
compute the basis vectors for stochastic structural dynamic analysis
problems. This is primarily because a system of random equations
must be solved at each excitation frequency of interest, or at each
time step. For the sake of simplicity, we shall consider here the case
involving frequency-domain analysis of a proportionally damped
stochasticstructural system. The procedure presentedcan be readily
extended to time-domain analysis.

For frequency-domain analysis, the deterministic and random
components of the coefficient matrix A(€) can be defined as

L) = (1+ jsokK, — (0® - je0)M, (19)

IL(o) = (1 + je oK — (0® = jmo)M, (20)

where o is the excitation frequency of interest, ¢; and ¢, are the
proportional damping coefficients defined earlier in Sec. II, and
J =+/—1. Note that the other matrices appearing in Egs. (19) and
(20) have been defined earlier in Sec. II.

If the stochastic basis vectors defined earlier are to be computed
at each excitation frequency of interest w, then the complex matrix
L(w) has to be repeatedly inverted. This is because an independent
set of stochastic basis vectors are used to compute the statistics
of the response at each excitation frequency. This may lead to a
significant increase in the computational cost if the response at a
large number of frequency points is to be computed. To reduce the
computational cost, we first solve for the left and right eigenvectors
corresponding to the k lowest eigenvalues of the generalized de-
terministic eigenvalue problem K, ¢ = AM,, ¢. Let A € C* ** denote
the diagonal matrix of eigenvalues and @, and @, € C"** denote
the matrix of left and right eigenvectors, respectively.

From Eq. (17), it can be observed that the tensors used in the
stochastic basis vector representation can be computed by solving
a deterministic system of equations of the form

L(o)x,(0) = I (0)x:(w) 2D

For efficiency reasons, we approximately solve Eq. (21) using the
modal transformationx, (w) = ®,g(w), where g(w) € C*. Note that
this approximationwas originally suggested by Nair and Keane!” in
the contextof dynamic reanalysis. Hence, by the use of the property
of biorthogonality of the eigenvectors, the solution of Eq. (21) can
be approximated as

21(@) = O,[A — L+ joG A+ ol)] O TL (X @) (22)

where I, € R¥** is the identity matrix. Because the matrix to be
inverted in Eq. (22) is diagonal, the basis vectors can be efficiently
computed. Furthermore, the accuracy of the approximation can be
improved by increasing k or by employing a modal acceleration
scheme.

D. Remarks

From Egs. (16) and (5), it can be seen that the final solution turns
out to be a vector of random polynomials. In particular, when the
basis vectors are computed by expanding the coefficient matrix us-
ing a Taylor series, the basis vectors can be interpreted as the terms
of the Taylor series for the solution vector. Note that this connec-
tion arises only if the matrix L™! is used as the preconditioner.It is
tempting here to draw connections between SRBMs and perturba-
tion methods. However, there is a fundamental difference between
these two classes of methods. First, perturbationmethods have alim-
ited radius of convergence due to which they may fail to converge
when the coefficients of variationof 6; are large. In contrast, SRBMs
represent a physics-based stochastic analysis approach because the
undetermined coefficients in Eq. (5) are computed by ensuring that
the governing algebraic equation (4) is satisfied in some sense; see
Sec. IV. Furthermore, due to Theorem 1, SRBMs can theoretically
convergence to the exact solution, provided a sufficient number of
basis vectorsis used. Also note that the terms of the Neumann series
were earlier used with a great degree of success as basis vectors for
static structural reanalysis by Kirsch.!® We discuss next the imple-
mentation aspects of the Bubnov-Galerkin scheme for stochastic
problems and outline some of its theoretical properties.

IV. Stochastic Subspace Projection
In this section, we present variants of the Bubnov-Galerkin (BG)
scheme for computing the undetermined coefficients in the stochas-
tic reduced basis representation. The first step in the BG scheme is
to formulate a stochastic residual error vector of the form

r(@) =A@)¥(©)£(0) — f(n) (23)



NAIR AND KEANE 1657

The BG scheme is an orthogonal projection technique, which en-
forces the conditionr(8) L W(0). To implement this condition, we
consider the following definitions for orthogonality between two
random vectors.

Definition 2: Two random vectors x,(0) and x,(0)eC"
are orthogonal in the Hilbert space of random variables if
(x1(6)x,(6)) =0.

Definition 3: Two random vectors x,(0) and x,(0) € C" are
orthogonal with probability one if P[x}(8)x,(8) =0]=1.

The reader is referred to Ghanem and Spanos? for a more formal
review of the origins of definition 2. Definition 3 is a probabilistic
interpretation of the definition of orthogonality between two de-
terministic vectors, which suggests that £(6) must be computed
by solving the reduced-order system random algebraic system of
equations

AB)E®B) =f(6, 1) (24)

where A(8) =¥*(0)AO)PH) € C" D>+ and f(0,n) =
W (0)f (1) € C" " are the reduced random coefficient matrix and
RHS, respectively. As shown later, the random matrix A(#) must
be symbolically inverted to ensure that for each realizationof € and
7 Eq. (24) holds. This is readily possible only when two or three
basis vectors are used. A more practical approach to this problem
is to employ simulation schemes for computing the statistics of the
undetermined coefficients. However, we will not pursue this further
here.

Now consider the case when definition 2 is employed to enforce
the conditionr(0) L W(0). Then, the undeterminedcoefficients turn
out to be deterministic scalars, which are computed by solving the
ensemble averaged linear algebraic system of equations

(A0)¢ = (£, ) (25)

It can be readily shown that Eq. (25) is a zero-order approximation
of Eq. (24). To show this, let us first approximate the solution of
Eq. (24) using the first term of the Neumann series, that is, a zero-
order approximation, which gives

AB)E =F0,m) (26)

Clearly, if the RHS of Eq. (26) is replaced by its ensemble average,
then the preceding equation becomes equivalentto Eq. (25). Hence,
we refer to Egs. (25) and (24) as the zero-order and the exact BG
scheme, respectively. We present next implementation details of
both of these variants of the BG scheme.

A. Zero-Order BG Scheme

The undetermined coefficients in the reduced basis are evaluated
here such that the stochastic residual error r(€) is orthogonal to
¥ (0) in the sense of definition 2, that is,

(¥ (©)r®) =0 (27

Equation (27) leads to a deterministic matrix system of equations of
dimension (m + 1) for the coefficient vector €. This formulation is
henceforthreferred to as SRBM-BGy to indicate that the zero-order
BG scheme is used for stochastic subspace projection. The order
of the approximation is considered to be equal to m, when m + 1
basis vectors are used. The system of equations to be solved for the
coefficient vector £ € C"*' can be written as

p
[OP*(a)L‘P(a)) + wa‘lf*(a)ml'(a))}s

i=1

i=1

= <‘P*(0) (fo + zq: szz)> (28)

The preceding equation can be rewritten in a compact form as

[{Lx(0)) + (T1(0))1€ = (£(8, ) (29)

where (Lg(0))_and (IIx(0)) € C D>+ are deterministic
matrices and (f(0, 1)) € C"*' is the deterministic reduced RHS.
These ensemble-averagedreduced-orderterms can be readily com-
puted using the joint statistics of @ and 7). General expressions for
the elements of these terms are presented in Appendix A. Note that
these expressionscan be simplified when 6 and 7 are jointly Gaus-
sian, or when the interaction terms in the basis vectors of order
greater than two are assumed to be zero as discussed earlier in Sec.
[II.B. These allow the computation of the deterministic coefficient
vector &, which we may then use in conjunction with Eq. (5) to
arrive at an explicit expression for #(8).

B. Exact BG Scheme

In contrast to the earlier formulation, here we aim to enforce the
condition that the stochastic residual error vectorr(6) is orthogonal
to the approximating space W(8) with probability one. In the sense
of definition 3, this condition can be written as

P[¥*(O)r®) =0] = 1 (30

It can be seen that Eq. (30) will be satisfied only when £(0) is
computed as

—1
p
£6) = [‘I’%a) (L + @H)‘P(G)}

i=1

q
x P (6) (fo + Zmﬁ) 31)

i=1

Hence, to achieve an explicit expression for £(0), we will have to
invertsymbolicallya random matrix of dimension (m + 1). This can
be readily carried out for small values of m. Our earlier experience
suggests that generally two or three basis vectors are sufficient to
ensure good approximations for moderate coefficients of variation
of 6;. Consider, for example, the first-order SRBM where u(60) is
approximated using two basis vectors as shown:

q
() = &(0) (L—‘fo +y mL—‘ﬁ-) +£1(0)

i=1

X i: ; (b[l + zq: njc[lj) (32)

i=1 j=1

The corresponding 2 x 2 matrix system of equations to be solved
for £(@) can be written as

[Lx(0) + I1(0)1£©6) = f(6,m) (33)

Explicit expressions for L (@), Iz (0), and f (6, ) can be readily
derived in terms of the random variables (see Appendix B). These
explicit expressions can be used to compute the random functions
&(0) and &, (0). Similar equations can also be derived for the case
when three basis vectors are used. The use of symbolic computation
software is expected to alleviate the tediousness of the derivation
greatly. Furthermore, it is expected that the explicitexpressions for
the reduced-order random matrices can be simplified by replacing
terms of order greater than three by their ensemble averages with-
out significant loss of accuracy. In summary, the exact BG scheme
leads to an explicitbut complicated expressionfor the response pro-
cess. The implication of this on the computational procedure for
calculating the response statistics is discussed later in Sec. V.

C. Theoretical Properties

The zero-order BG scheme has a number of interesting properties
becauseitis an orthogonalprojectionscheme. For example, consider
the case when the coefficient matrix A (@) is Hermitian positive defi-
nite. Furthermore, let IC,, denote the stochastic subspace spanned by
the set of orthogonalbasis vectors 1, (8), ¥, (0), . .., 1, (6). (Note
that an orthogonal set of basis vectors spanning the preconditioned
stochastic Krylov subspace can be computed using the stochastic
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version of Arnoldi’s method as presented by Nair.!”) Let us first
write the zero-order BG condition as

({AB)i(O) — f ()}, (8)) =0, Ve, (0) € K (34)
By the substitution of f(n) =A(0)u(@), the preceding condition
becomes

({@(0) —u(6)}"A"(0)v,(9)) = 0, V4, (0) € K,y (35)
From the preceding equation, it can be seen that the BG, scheme
ensures that the difference between the exact and the approximate
solution is A orthogonal to the approximating space KC,,. Now, by
the use of the elementary properties of orthogonal projectors (see
Chapter 1 in the book by Saad??), it can be shown that Eq. (35) is
the necessary and sufficient condition for () to be a minimizer
of the error function ({#(0) — u(0)}*A{u(0) —u(0)}). This result,
which establishes the optimality of the SRBM-BG scheme, can be
stated as follows.

Theorem 2: Let u(0)=Y(0)¢ be a stochastic reduced ba-
sis approximation to the solution of A(@)u(0) = f(n), where
A(0) € €" " is a random Hermitian positive definite matrix, u()
and f(n) € C" are random vectors, ¥(0) € C"*" is a matrix of
stochastic basis vectors, and £ € C” is a vector of undetermined
coefficients. If the coefficient vector £ is computed by imposing
the condition A(0)¥(0)£(0) — f(n) L W(0), then the following
deterministic error function is minimized:

A% = ({u(8) —u(0)}"A0){u(6) — u(0)}) (36)

where A’y denotes the A norm of the error.

An important corollary of Theorem 2 is that when the number of
basis vectorsin the SRBM-BG scheme is increased, the A norm of
the error will never increase, that is, AT < AL where AL and
A', denote the A norm of the error using i + 1 and i basis vectors,
respectively. This implies that the A norm of the error will converge
in a mean-square sense. Note that a similar result can be proved for
the £, norm of the residual for non-Hermitian coefficient matrices,
when an obliquestochasticsubspace projectionscheme is employed
to compute the undetermined coefficients. (The reader is referred to
Appendix A in Ref. 19 for an overview of the stochastic Petrov-
Galerkin scheme.) Even though we have not formally established
such results for the exact BG scheme at the time this paper was
written, it is conjectured that the A norm of the error will converge
in probability for this scheme.

V. Computational Aspects of SRBMs

In summary, the main computationalsteps in SRBMs involve the
1) decomposition of a deterministic matrix to compute the precon-
ditioner, 2) recursive computation of the basis vectors, 3) stochastic
subspaceprojectionto compute the undetermined coefficientsin the
reduced basis, and 4) statistical postprocessingof the reduced basis
representation.It can be readily shown that SRBMs require O (p*q)
sparse matrix-vectormultiplicationsin additionto one deterministic
analysis,where p and g denote the total number of random variables
appearing in the coefficient matrix and the RHS, respectively,and k
is the number of basis vectors. This implies that the computational
cost goes up exponentially with increase in the number of basis vec-
tors. However, as is shown later via numerical studies, two or three
basis vectors are generally sufficient to obtain accurate results for a
number of cases.

If the tensors in the basis vectors are explicitly computed, then
O(p*q) n-dimensional vectors are required to be stored in memory.
To reduce the memory requirements, the idea presented earlier in
Sec. II1.B can be effectively used to simplify the basis vectors of or-
der greater than two. The memory requirements and computational
cost will consequentlyreduce to O(p*q) n-dimensionalvectors and
sparse matrix-vector operations, respectively.

For the exact BG scheme, there is an additional memory require-
ment of O(p*q) scalarsif explicit expressions for the random func-
tions describingthe coefficients of the reduced basis are desired (see
Appendix B). Clearly, this could be prohibitive for systems with a
large number of random parameters. As discussed earlier, one way

toreducethisadditionalmemory requirementwouldbe to replaceall
terms of order greater than three in the reduced-orderequations by
their ensemble averages, which will reduce the additional memory
requirement to O(p3q). Furthermore, because most of the com-
putationally intensive steps in SRBMs involve independent sparse
matrix-vector operations, this class of algorithms is expected to
scale well on parallel computing architectures.

In considering the computation of response statistics, let us first
consider the case when the zero-order BG scheme is used for
stochastic subspace projection. This leads to a random polynomial
for the response process of the form

W(0) =Y &1,(0) (37)

i=0

Because the coefficients &; are deterministic scalars, the mean and
covarianceof the response can be expressedin terms of the statistics
of the basis vectors as follows:

(@(0) = > &(1,(0) (38)

i=0

Z; = (@@u () = (Y (06" (0))

=YY EE w019 (9) (39)

i=0 j=0

Note that expectation operations in Egs. (38) and (39) can be ana-
lytically carried out using the joint statistics of 6; and »;. (See, for
example, McCullagh?!' and Chapter 4 of Ghanem and Spanos? for a
detailed exposition on statistical analysis of random polynomials.)

The expressions for the mean and covariance matrix suggest that
the memory requirements can be significantly reduced if no other
statistical quantities are to be computed. To achieve this, we may
first compute the coefficients of the stochastic reduced basis using
the expressions in Appendix A, without explicitly computing the
tensors in the basis vector representation. Subsequently, the mean
and covariance of the response can be computed using Egs. (38)
and (39). Clearly, this two-step procedure achieves a significant
reduction in the memory requirements at the expense of increased
computations. Note that the need for explicitly computing the basis
vectors only arises if the response PDF is to be computed in the
postprocessing stage by sampling Eq. (37).

In contrast, for the exact BG scheme, the coefficients of the re-
duced basis turn out to be highly nonlinear functions of the random
variables (Appendix B). Hence, analytical solutions for the statistics
of u(@) are not readily possible. Fortunately, sampling the reduced
basis representation involves only a few operations when p < n.
In particular, the first- and second-order SRBMs require O(p?) and
O(p?) operations,respectively.For problems with a large number of
random parameters, the operationcountcan be reduced by replacing
the higher-order terms by their ensemble averages. Hence, Monte
Carlo integration techniques can be readily applied to compute the
response statistics efficiently.

In the context of reliability analysis (for example, Wu??), SRBMs
allow the derivation of an explicit expression for the multidimen-
sional limit state curve. This potentially enables the efficient com-
putation of failure probabilities without resorting to first- or second-
order reliability approximations. In fact, the complete PDF of the
response may be computed by employing simulation schemes and
density estimation techniques. Alternatively, the maximum entropy
principle* could be used to reconstruct the PDF of the solution
using the statistical moments computed using Eq. (37).

VI. Demonstration Examples

In this section, we apply SRBMs to some problems in structural
mechanics. MCS studies using exact structural analysis are con-
ducted to generate benchmark results, against which the various
approximate methods are compared. We present results for the first-
and second-order SRBMs, that is, using two and three basis vectors,
respectively. When the zero-order BG scheme is used to compute
the undetermined coefficients in the reduced basis, the SRBM of
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order k is referred to as SRBMk-BG, where k + 1 is the number
of basis vectors. Similarly, when the exact BG scheme is used, the
kth-order SRBM is referred to as SRBMk-BG. We compare the re-
sultscomputedusing SRBMs with those obtained using the first- and
second-orderNeumann expansionscheme, referred to as NEU1 and
NEU?2, respectively. For examples 1 and 2, we also present results
for the first-order polynomial chaos scheme,’ referred to as PC1.

A. Example 1: Static Structural Analysis

The first example considered is a 10-bar truss structure (Fig. 1)
taken from Penmetsa et al.,* where an approach based on Fourier
transforms was compared with various reliability analysis tech-
niques. In this problem, the cross-sectional areas of all of the truss
members are modeled as uncorrelated Gaussian random variables
with mean 2.5 and standard deviation (STD) o,. The value of oy is
setat 0.3 and 0.5 for cases 1 and 2, respectively.For each case, MCS
using exact static analysis with a sample size of 300,000 is used to
generate benchmark results (henceforth referred to as exact MCS).
The results computed using SRBMs, the Neumann series, and the
first-order polynomial chaos are compared with these benchmark
results.

The average percentage errors in the mean and STD across all
of the DOF are shown in Figs. 2 and 3 for cases 1 and 2, respec-
tively. It can be seen that the Neumann series converge very slowly
to the benchmark results, particularly for the STD of the displace-

ment. In contrast, SRBMs converge more rapidly to the exactresults
when the number of basis vectors is increased. PC1 generally tends
to give results that are comparable to NEU2. Note that, for this
particular problem (with eight DOF and 10 random variables), ap-
plication of PC1 leads to the requirement of solving an 88 x 88
deterministic system of equations. Given this, it is remarkable that
SRBM1-BG gives results of similar accuracy by solving a 2 x 2
deterministic system of equations. Also note that SRBM2-BG gives
exact results for the first two statistical moments for both cases. In
summary, the results support the theoretical evidence for the opti-
mality of the preconditioned stochastic Krylov subspace presented
earlier.

Note that the size of the deterministic system of equations to be
solved for the undetermined coefficients grows linearly for SRBMs.
In contrast, the growth in dimensionality for the polynomial chaos
scheme is significantly higher; for example, the second-order poly-
nomial chaos scheme resultsin a 528 x 528 system of equations for
the simple example problem considered here.

B. Example 2: Structural Reliability Analysis

In this section, we present results for reliability analysis of the
10-bar truss structure considered in example 1. As in Ref. 24, the
cross-sectional areas of all of the truss members are modeled as
uncorrelated Gaussian random variables, with mean 2.5 and STD
0.5. The reliability analysis problem involves computing the multi-
dimensional integral

E=107 psi
L=360in Py = Ja(@) da (40)
g(a)>1.8
where P, denotes the probability of structural failure, a € R de-
notes the vector of random cross-sectional areas and f, (a) denotes
L its joint PDF, and g(a) is the limit state function that is defined for
this problem as g(a) = max{u(60)}, where u(0) € R? denotes the
random displacementvector. Clearly, it would be preferable to sim-
plify SRBMs to compute P, analytically. However, an analytical
—t expressionfor P, can be readily derived only when SRBM1-BG;, is
used. In the present study, we use a simulation scheme to compute
10000 Tb 10000 1b P because SRBMs provide an explicit expression for the displace-
ment vector.
We compare SRBMs with various approximate reliability anal-
Fig.1 Truss structure, 10 bars. ysis methods, the performances of which were studied in Ref. 24.
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Fig.2 Average errors in mean and STD of displacement for example 1, case 1, g9 =0.3.
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We generated benchmark results using a sample size of 300,000
to compute the probability of failure using exact static analysis as
well as the SRBMs (except for SRBM1-BG, and PC1, where Py
can be computed analytically). The percentage errors in P, com-
puted using the first- and second-order SRBMs are compared with
other techniquesin Table 1. We observed that our benchmark result
(MCS1) is around 1.8% lower than that reported in Ref. 24 (re-
ferred to as MCS?2 in Table 1). Hence, we also show in parentheses
the percentage error of all the methods vis-d-vis MCS2.

Note that except for the SRBMs and PC1, all other techniques
compute as a first step the most probable point (MPP) of failure
using an iterative scheme, and then constructan approximate model

Table1l Comparison of methods for reliability analysis
of a 10-bar truss structure

Method Py Error, %
MCS1 0.1384

SRBMI1-BG 0.1358 —1.88(-3.76)
SRBM2-BG 0.1383 0.0 (—1.94)
SRBMI1-BG 0.1150 —16.9(—18.3)
SRBM2-BGy 0.1399 2.74.(0.85)
PC1 0.1170 —15.44(-17.1)
MCS2?* 0.1411

FFT* 0.1326 —4.19 (—6.04)
FORM?* 0.0862 —37.72 (—38.90)
BREITUNG? 0.0907 —34.47 (=35.71)
TVEDT2?* 0.0951 —31.29(-32.61)
TVEDT3* 0.0966 —30.20 (—=31.53)

aResults for these methods have been taken from Penmetsa et al. 24

around it. In contrast, the SRBMs circumvent the MPP computation
step by constructing a global model using a set of stochastic basis
vectors. In spite of this, it can be readily seen from Table 1 that the
SRBMs give more accurate results as compared to the other state-
of-the-artreliability analysis techniques considered here. Also note
that SRBM 1-BG, (whichis a first-order method) gives betterresults
than the FORM and the second-order reliability methods, referred
to as BREITUNG, TVEDT2, and TVEDTS3. Clearly, the accuracy
of the SRBMs could have been improved even further by using a
preconditioning matrix at the MPP (i.e., the inverse of the stiffness
matrix computed at this point) for computing the basis vectors. Fur-
ther work is also required to introduce simplifying assumptions for
analytically computing P;.

C. Example 3: Frequency Response Analysis

In this section, we present results for frequency response analy-
sis of a cantilevered network of 20 Euler-Bernoulli beams (Fig. 4),
each with random Young’s modulus and mass density. The struc-
ture is modeled using four elements for each beam member, which
leads to a finite element model with 210 DOF. The axial and flexu-
ral rigidity of each structural member are modeled as E,A(1 +6;)
and E,I(1+6,),i=1,2,...,20,respectively. The mass density of
eachmemberis modeledas p = p,(14-6;),i =21,22,...,40.Note
that6;,i =1,2, ..., 40, are considered as uncorrelated zero-mean
Gaussian random variables with STD 0.05, whereas E,A =
6.987 x 10° N, E,I =1.286 x 10°* Nm?, and p, =2.74 kg/m.

As shown in Fig. 4, the structure is subjected to transverse har-
monic excitation at joint 1. The transverse component of the dis-
placement response at joint number 9 is studied in the region of
0-500 Hz at 150 equally spaced points. Results are computed for
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Fig. 3 Average errors in mean and STD of displacement for example 1, case 2, g9 =0.5.

Fig.4 Cantilevered network of 20 Euler-Bernoulli beams.
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Fig.6 Comparison of STD of displacement response computed using the first-order methods for example 3.

SRBM1-BG, SRBM2-BG, NEU1, NEU2, and exact MCS using a
sample size of 10,000.

The mean and STD of the displacementresponse computed using
the approximate methods are compared with benchmarkresults gen-
eratedusing MCS and exactstructuraldynamicanalysisin Figs. 5-8.
It can be clearly seen that SRBMs give significantly better approx-
imations than the Neumann series. In particular, SRBM2-BG gives
accurate approximations for both statistical moments of the dis-
placement response. The accuracy of SRBMs for this problem is

remarkable considering that Theorem 2 does not strictly hold for
complex symmetric matrices. It is expected that the accuracy of
SRBMs can be improved by employing an oblique stochastic pro-
jection scheme, which, as mentioned in Sec. IV.C, can be shown to
be convergent for non-Hermitian matrices.

It can be observed that NEU2 gives more erroneous results than
NEUI1 forbothsstatisticalmoments of the frequencyresponse, partic-
ularly near resonance frequencies. This indicates that the Neumann
series diverges for this problem. However, the preconditioned
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Fig.8 Comparison of STD of displacement response computed using the second-order methods for example 3.

stochastic Krylov subspace (or the terms of the Neumann series) do
provide a rich set of basis vectors for approximating the response
process.Hence, using this set of basis vectors, the responsestatistical
moments computed using the SRBMs are up to orders of magnitude
more accurate than those derived from the Neumann series.

VII. Summary

In this paper, we have presented SRBMs for solving linear ran-
dom algebraic systems of equations, such as those arising from

discretizationof linear stochastic PDEs in space, time, and the ran-
dom dimension. We introduced the idea of representing the solution
vectoras a linear combinationof stochasticbasis vectors with unde-
termined coefficients. A theoreticaljustification for employingbasis
vectorsspanning the preconditionedstochasticKrylov subspace was
outlined. Subsequently, we presented stochastic variants of the BG
scheme for computing the undetermined coefficients in the reduced
basis. It is shown that the A norm of the error converges for these
projection schemes, when the number of basis vectors is increased.
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We also closely examined the computational aspects of SRBMs.
In particular, an efficient scheme was presented for recursively com-
puting basis vectors spanning the preconditionedstochastic Krylov
subspace for static and dynamic structural analysis. Some ideas
for reducing the computational cost and memory requirements of
SRBMs were also discussed. Similar to the polynomial chaos pro-
jection scheme,? a major advantage of SRBMs is that an explicit
representationof the response quantitiesin terms of the random sys-
tem parameters can be achieved. As a result, the response statistics
can be efficiently computed in the postprocessing stage. However,
because SRBMs lead to a reduced-order system of equations, our
approach is expected to be computationally more efficient than the
polynomial chaos projection scheme, which leads to a system of
equations with increased dimensionality.

Numerical studies were presented for static and dynamic analy-
sis of randomly parameterized structural systems. The results ob-
tained using SRBMs have been compared with the Neumann se-
ries and other relevant techniquesin the literature. We demonstrate
that SRBMs converge much faster to the exact statistics than the
Neumann series. For some of the cases, the response statistical
moments computed using SRBMs are up to 10 times more accu-
rate compared to the Neumann series. The results also indicate that
SRBMs can provide accuracy that is comparable to, or better than,
the polynomial chaos scheme at a much lower computational cost.
This suggests that SRBMs can be employed as an efficient solverin
the SSFEM scheme of Ghanem and Spanos.2

The present research has important ramifications from a theoret-
ical point of view. From the theoretical perspective, we have high-
lighted how existing results in numerical linear algebra on Krylov
subspace methods** for deterministic systems can be leveraged to
devise SRBMs. In numerical linear algebra, methods based on the
Krylov subspace have a rich history spanning more than 50 years,
and they continue to be an area of extensive research. Hence, the
connectionsmade in this paper provide us access to a sound theoret-
ical foundation from which new numerical methods for stochastic
problems may be developed.

As computational experience accumulates on a variety of prob-
lem domains, we hope to gain a deeper insight into the theoretical
and computational properties of SRBMs. This is expected to aid
us in the task of devising alternative choices of preconditioners or
basis vectors, which may lead to significant reductions in the com-
putational cost and memory requirements. It also remains to be seen
whether employing an oblique stochastic projection scheme!® will
improve the accuracy of the results for stochastic structural dynam-
ics. Ideas on extending SRBMs to nonlinear stochastic systems,
algebraic random eigenvalue problems,'® and a posteriori error es-
timation schemes'® merit further investigation. It is hoped that the
formulationspresentedin this paper will accelerate the development
of efficient stochastic subspace projection schemes for tackling a
wider class of problems in stochastic mechanics.

Appendix A: Reduced-Order Terms
in SRBM-BG, Scheme
The expressions for the deterministic reduced-order matrices
which arisein the kth-order SRBM using the zero-order BG scheme
[see Eq. (29)] are summarized hereafter. (L (0)) € C™ D> "+ jg
a deterministic matrix, a typical element of which can be computed
as

(Le(k, ) = (7 (O)Lap,(6))
= (0,600 0,0,05. ... 0,)(% ) LP, )
{0161, 005,010, O B ) LA )
(608 O 03O O3 (e ) LB )
(000 O 03000, O, )

: )L(, )
X(ctlw ----- iK1 cjljz ----- Ji+1

(TIx(0)) € C™ T D>+ ig 4 deterministic matrix that can be com-
puted as

p

(k. 1) = Y (647 (O)TT3p,(8))

i=1

= {06 010010 0,) (B, ) Thea (B, )
PR

T (¢hs i)

{00 O M 20087, ) )

xTh (B, )
+<6[16[2,...,6[k+ln[k+2611612""’gj/nj/+l>(cf'(1[2 ..... i)

Similarly,atypicalelementof (f (8, 17)) € €" " canbe evaluated

as
(Fw) = (wi)fo + > (win)f,

i=1

= (6116107"' >(bfll° [k)*fo

+<6[16[2?"'?elkr’lkJrl)(cf'(l[a ..... Lk+1) fo
+<9i19i2»---»%Uk-;—l)(bmg ..... )*f[kﬂ
+(6[16[2»---»gzkntk+lnlk+°>(cf'(1m ..... Lk+1) flk+°

In the notation used here, repeated indices indicate summation
with respect to that index over its range. Given the joint statistics
of 6; and 7;, the expectation operations appearing in the preced-
ing equations can be readily carried out. Hence, the undetermined
coefficients in the stochastic reduced basis can be computed as
& =[(Lg) + (ITg)17'(f). Note that the expressions for the reduced-
order matrices can be greatly simplified if the vectors 6 and ) are
modeled as zero-mean uncorrelated Gaussian random variables. In
fact, such a simplification was used to develop a library of sub-
routines for the numerical studies presented here. An even greater
simplification results if the interaction terms in the basis vectors of
order greater than two are assumed to be zero (see Sec. II1.B).

Appendix B: Reduced-Order Terms
in SRBM-BG Scheme
For the sake of notational simplicity, consider the case when the
RHS in Eq. (4) is deterministic. Then the reduced-order coefficient
matrix and the RHS for the first-order SRBM, which uses the exact
BG scheme [see Eq. (33)], can be written using repeated index
notation as

r:Lt, + 6,4, 6,b; + 6,6,C;;

L(0) + HR ) = ~ ~
0,6, +6,0,C;; 6,0, D;; + 6,0,6,E;,

(B1)
F(o [t: f”} (B2)
f0.n) = 6 f
where t,=L"'f, € C", a; =t:11t,,b; =t'Lb}, —t*H,b1 bi=

(b‘)*Lt,,, Cu = (b‘)*H,t D;; = (b‘)*Lb‘, ik = (bL‘)*H b1 and
f=®)f,.

By the use of Egs. (B1) and (B2), an explicit expression can be
derived for the random functionsin the reducedbasisrepresentation.
Similar expressionscan also be derived when three basis vectors are
used in the reduced basis.
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