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Stochastic Reduced Basis Methods

Prasanth B. Nair¤ and Andrew J. Keane†
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Stochastic reduced basis methods for solving large-scale linear random algebraic systems of equations, such
as those obtained by discretizing linear stochastic partial differential equations in space, time, and the random
dimension, are introduced. The fundamental idea employed is to represent the system response using a linear
combination of stochastic basis vectors with undetermined deterministic coef� cients (or random functions). We
present a theoretical justi� cation for employing basis vectors spanning the preconditioned stochastic Krylov sub-
space to approximate the response process. Subsequently, variants of the Bubnov–Galerkin scheme are employed
to compute the undetermined coef� cients, which allow explicit expressions for the response quantities to be de-
rived. We also examine some theoretical properties of the projection scheme and procedures for computing the
response statistics. Numerical studies are presented for static and dynamic analysis of stochastic structural sys-
tems. We demonstrate that signi� cant improvementsover the Neumannexpansionscheme, as well as other relevant
techniques in the literature, can be achieved.

I. Introduction

T HE equationsgoverningthe physics of many complex systems
can be described by ordinary or partial differential equations

(PDEs). A wide body of numerical methods based on � nite differ-
ences, � nite elements, and boundary elements are available in the
computational mechanics literature to solve the governing equa-
tions approximately for the response quantitiesof interest. Over the
last 50 years, signi� cant progress has been made in the theoretical
groundworkof thesemethods for caseswhen a system is modeled in
a deterministic framework and when a deterministic linear system
is subjected to random excitation.

By contrast, the use of probabilisticmodels for the system param-
eters leads to a signi� cant increase in the problem complexity. This
is primarily due to the dif� culties in arriving at tractable descrip-
tions of the system response in terms of the stochastic differential
operators and the random excitation � elds. Exact solutions to this
class of problemsare possibleonly under restrictiveassumptionsfor
simple problems (for example, Elishakoff et al.1). In the context of
stochastic analysis of large-scalesystems of practical interest, most
research work has focused on computationally ef� cient methods
that allow the responsestatisticsto be approximatedwith reasonable
accuracy.

The approachesin the literaturecan be broadly classi� ed into dif-
ferentcategories,dependingon how the systemparametersare mod-
eled (random � eld or random variables), the scheme used for dis-
cretizing the random � elds, the linearization techniques employed
to simplify the nonlinear terms, the spatial and temporal discretiza-
tion scheme, and the algorithm used to solve the resulting random
algebraic equations. The interested reader is referred to the mono-
graphs of Ghanem and Spanos2 and Kleiber and Hien3 for a detailed
exposition of computational stochastic mechanics.

Monte Carlo simulation (MCS) techniques4 and responsesurface
methodology(RSM)5 have beenwidely applied to a variety of prob-
lems in this area. These approaches are quite general in scope and
utilize existing deterministicanalysis software. However, due to the
requirement of many deterministic simulations, they are practical
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only for problems where deterministic analysis takes modest com-
putational effort. Local approximation methods based on Taylor or
Neumann expansion series have also been popularly used in the
stochastic � nite element literature (for example, Refs. 3, 6, and
7). These methods are computationallymore ef� cient compared to
MCS and RSM. However, local approximation methods give accu-
rate results only for small coef� cients of variation of the random
system parameters.

A spectral stochastic � nite element method (SSFEM) was pro-
posed by Ghanem and Spanos2;8 for linear stochasticPDEs. In this
approach, the random � elds describing the PDE coef� cients are
discretized using the Karhunen–Loeve expansion scheme. Subse-
quently,a � niteelementprocedureis used to derivea systemof linear
randomalgebraicequations,which is then approximatelysolved us-
ing the Neumann expansion scheme. An alternative approach was
also proposed, wherein each component of the solution vector is
representedby the polynomial chaos decompositionwith unknown
coef� cients.By the use of theBubnov–Galerkinscheme,a systemof
deterministic linear algebraicequations(with increaseddimension-
ality proportional to the number of terms in the polynomial chaos)
was obtained for the unknown coef� cients. The reader is referred to
Ghanem9 for a recent review of the mathematical background and
implementation aspects of the SSFEM.

More recently, Elishakoff et al.10 and Ren and Elishakoff11 have
focusedon � nite element analysisof structureswith large stochastic
variations.The key idea has been to develop approaches that do not
use perturbationschemes.An excellentdiscussionon themotivation
for this and further work in the area of stochastic � nite element
analysis can be found in the work of Elishakoff and Ren.12

The present paper is concernedwith the analysis of systems gov-
ernedby linearstochasticPDEs. In particular,we introducea classof
ef� cientnumericalschemes for solvinglarge-scalelinearrandomal-
gebraicsystems of equations,such as those obtainedby discretizing
linear stochastic PDEs in space, time, and the random dimension.
The fundamental idea proposed here is to represent the response
process using a linear combination of stochastic basis vectors with
undeterminedcoef� cients. The undeterminedcoef� cients are either
considered as deterministic scalars or random functions. Methods
based on this representation, where the number of undetermined
coef� cients is less than the dimension of the discretized PDE, are
referred to as stochastic reduced basis methods (SRBMs) in this
paper. In contrast, in the projection scheme proposed by Ghanem
and Spanos,2 the basis vectors are consideredto be unknown,which
leads to a system of equations with increased dimensionality.

We discuss the choice of basis vectors, with a particular empha-
sis on the preconditionedstochasticKrylov subspace. A theoretical
justi� cation for employing the terms of the stochastic Krylov sub-
spaceas basisvectorsis outlined.Ef� cientproceduresfor computing
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the basis vectors are presented, particularly for stochastic struc-
tural dynamic analysis. Subsequently, we employ two variants of
the Bubnov–Galerkin scheme for computing the undetermined co-
ef� cients in the stochastic reduced basis representation. In the � rst
procedure, the undetermined coef� cients are considered as deter-
ministic scalars. The second procedure deals with the case when
only two or three basis vectors are used. Hence, it becomes pos-
sible to treat the reduced basis coef� cients as random functions,
which ensures that the stochastic residual error is orthogonal to the
approximating space of basis vectors with probability one. Both of
these projectionschemesallowexplicit expressionsfor the response
quantities to be derived, which enables us to compute its complete
probabilistic description ef� ciently. We also brie� y discuss some
theoretical properties of the stochastic Bubnov–Galerkin scheme.

Numerical studies on some problems in structural mechanics are
presented to demonstrate that high-quality approximations of the
responsestatisticscan be achievedfor moderate to large coef� cients
of variation of the random system parameters. In particular, it is
shown that SRBMs can be up to orders of magnitudemore accurate
than the Neumann expansion scheme. Our results also suggest that
SRBMs give results that are comparable to or better in accuracy
than the polynomial chaos scheme at a much lower computational
cost.

This paper is organizedas follows:SectionII presentssomemath-
ematical preliminaries used in the paper. In Sec. III, we present
a theoretical justi� cation for employing basis vectors spanning
the preconditioned stochastic Krylov subspace. We also outline
an ef� cient scheme for computing the basis vectors for stochas-
tic structural dynamic analysis problems. Stochastic variants of the
Bubnov–Galerkin scheme and its theoretical properties are pre-
sentedin Sec. IV. In Sec. V, we examinethecomputationalproperties
of SRBMs, including procedures for computing the responsestatis-
tics. Numerical studies on static and dynamic analysis of stochastic
structuralsystemsare summarized in Sec. VI. SectionVII concludes
the paper and discusses some directions for further research.

II. Preliminaries
We use the followingnotation throughoutthis paper. For the sake

of generality,all of the vector spacesconsideredare complex,unless
otherwise stated. We use the notation R n £ n and C n £ n to refer to
the space of n £ n real and complex matrices, respectively.Random
quantities are indicated explicitly as a function of µ or ´, and the
ensembleaverage is denotedwith anglebrackets.We denotevectors
and matrices by lower case and upper case bold characters, respec-
tively. The notation x¤ is used to denote the complex conjugate
transpose of a vector or matrix (if it is complex), or the transpose
(if it is real).

Next, we outline the steps involved in discretization of linear
stochastic PDEs in space and the random dimension on the lines
presented earlier by Ghanem.9 The objective is to derive a general
expression for the discretized � nite dimensional random equations,
which sets the stage for the developmentofSRBMs. For illustration,
we consider a linear stochastic PDE of the form

T®[u.x; t ; µ; ´/] C L¯[u.x; t; µ; ´/] D f .x; t; ´/ (1)

where x 2 R 2 or R 3 refers to the spatial coordinates,u.x; t ; µ; ´/ de-
notes the � eld variable, t 2 R C refers to time, and µ; ´ 2 Ä belongs
to the Hilbert space of random variables. T® and L¯ denote linear
stochastic differential operators. These operators have coef� cients
®.x; µ/ and ¯.x; µ/, which are considered to be second-order ran-
dom � elds. Here, f .x; t; ´/ denotes the random excitation � eld for
which a solution u.x; t ; µ; ´/ is sought.

The random � elds in Eq. (1) can be readily discretized to rep-
resent them in terms of a � nite number of random variables using
any of the techniques in the literature.2;13 Let us consider, for the
sake of simplicity, that the random � elds appear as multiplicative
terms in the differential operators. Hence, spatial discretization of
the stochasticPDE and applicationof the appropriateboundarycon-
ditions lead to a matrix system of randomdifferentialequations.For
example, for a linear structural system, we obtain a matrix system
of second-order random differential equations of the form

M.µ/ Ru.t ; µ; ´/ C C.µ/ Pu.t ; µ; ´/ C K.µ/u.t; µ; ´/

D fo.t/ C
qX

i D 1

´i fi .t/ (2)

where

M.µ/ D Mo C
pX

i D 1

µi Mi 2 R n £ n

K.µ/ D Ko C
pX

i D 1

µi Ki 2 R n £ n

denote the random mass and stiffness matrix, respectively, where
Mo , Mi , Ko , and Ki 2 R n £ n are deterministic matrices, and where
n is the total number of degrees of freedom (DOF). C.µ/ 2 R n £ n

denotes the random damping matrix, which we will consider to be
proportional [i.e., C.µ/ D ³1K.µ/ C ³2M.µ/], where ³1 and ³2 2 R
aredeterministicscalars.Here, fo.t/ and fi .t/ 2 R n aredeterministic
vectors.Also,µ D fµi g, i D 1; 2; : : : ; p and´ D f´i g, i D 1; 2; : : : ; q,
denote the vectorsof randomvariablesarising from discretizationof
the random� eldsdescribingthe systempropertiesand the excitation
� eld, respectively. Finally, u.t ; µ; ´/ 2 R n denotes the discretized
vector of displacements.

Clearly, for static problems,Eq. (2) will reduce to a system of lin-
ear random algebraic equations. Similar sets of equations could be
arrived at for time-dependent problems by transforming the equa-
tions to the frequency domain, which leads to a system of complex
linear random algebraic equations. As shown in a recent study,14

a system of linear random algebraic equations can also be arrived
at when the implicit Newmark scheme is used for computing the
response in the time domain. Hence, without any loss of generality,
we may represent the resulting system of linear random algebraic
equations as³

L C
pX

i D 1

µi P i

´
u.µ; ´/ D fo C

qX

i D 1

´i fi (3)

where L and P i 2 R n £ n are deterministic matrices, fo and fi 2 R n

aredeterministicvectors,andu.µ; ´/ 2 R n is the stochasticresponse
process. In other words, a solution methodology for Eq. (3) can
be directly applied to static and dynamic response analysis of lin-
ear stochastic structural systems, as well as a wider class of linear
stochastic PDEs.

For cases when the system parameters and external forces are
modeled as random variables, Eq. (3) can be derived by expanding
the global coef� cient matrices using a � rst-order Taylor series and
appropriately representing the random forces. Note that this repre-
sentation is exact when the coef� cient matrix is a linear function
of the random system parameters, for example, when the Young’s
modulus of a beam member is modeled as a random variable. Al-
ternatively, the polynomial chaos decomposition scheme2 can be
employed to expand each term of the coef� cient matrix and the
force vectorusing a series of orthogonalrandompolynomials.Then
the random variables µi and ´i become orthogonal random polyno-
mials. Even though the formulations that follow assume a random
variablerepresentation,it can be readily extendedto cases involving
expansion in terms of random polynomials.

In the sections that follow, the coef� cient matrix of Eq. (3)
will sometimes be denoted by the matrix A.µ/. This implies that
hA.µ/i D L, and the term

pX

i D 1

µi P i

denotesthe zero-meanrandomcomponentsof thematrix A.µ/. Sim-
ilarly, the right-hand side (RHS) of Eq. (3) will sometimes be com-
pactly written as f .´/.

III. Stochastic Basis Vectors
In this section, we present the basic idea behind SRBMs. We

brie� y outline why the stochastic Krylov subspace is appropriate
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for computing the solution of Eq. (3). Then we describe a recursive
scheme for computing basis vectors spanning the preconditioned
stochastic Krylov subspace. Particular attention is paid to ef� cient
schemes for basis vectors computation in stochastic structural dy-
namics. To proceed, let us � rst compactly rewrite Eq. (3) as

A.µ/u.µ; ´/ D f .´/ (4)

where A.µ/ 2 C n £ n is a random matrix and u.µ; ´/ and f.´/ 2 C n

are random vectors. Also, µ 2 R p and ´ 2 R q denote the vector of
randomvariablesin thecoef� cientmatrix and theRHS, respectively.
Note that, for the sake of generality, the coef� cient matrix and the
RHS are considered here as complex quantities. Henceforth, for
simplicityof presentation,all randomquantities(exceptfor the RHS
f ) will be denotedas a functionof µ. The dependenceon the random
vector ´ will not be shown explicitly.

The fundamentalideaused in thispaper is to representthe solution
of Eq. (4) as

Ou.µ/ D »0.µ/Ã0.µ/ C »1.µ/Ã1.µ/ C ¢ ¢ ¢ C »m .µ/Ãm.µ/

D W .µ/».µ/ (5)

where W .µ/ D [Ã0.µ/, Ã1.µ/, : : : ; Ãm.µ/] 2 C n £ .m C 1/ denotes a
matrix of m C 1 stochastic basis vectors and ».µ/ D f»0.µ/, »1.µ/,
: : : ; »m .µ/g 2 C m C 1 denotes the vector of undeterminedcoef� cients
in the reduced basis. Note that for the sake of computational ef� -
ciency we will choose m n n.

Clearly, along with the number of terms, the accuracy of the
stochastic reduced basis representation will depend on the quality
of the basis vectors as well as the scheme employed to compute the
undetermined coef� cients in Eq. (5). We discuss next which basis
vectorsare appropriatefor approximatingthe solutionprocessu.µ/.

A. Properties of the Stochastic Krylov Subspace
In this section, we show that the solution of Eq. (4) lies in the

stochastic Krylov subspace. The analysis presented in this section
follows from the theoretical results outlined by Ipsen and Meyer15

for deterministic systems of equations. More speci� cally, we con-
sider the problem where, given a nonsingular random square ma-
trix A.µ/, it is required to compute the vector A.µ/¡1 f .´/. Let us
� rst introduce the notion of the minimal polynomial of a random
matrix. For a random matrix, the minimal polynomial q can be de-
� ned as the unique monic random polynomial of smallest degree
such that q[A.µ/; µ] D 0. We assume that the matrix A.µ/ is di-
agonalizable and that its d distinct eigenvalues can be written as
¸1.µ/; ¸2.µ/; : : : ; ¸d.µ/. Then, it follows that

q[A.µ/; µ] D
dY

j D 1

[A.µ/ ¡ ¸ j .µ/I ]m j (6)

where m j denotes the index of the j th eigenvalue, and

m D
dX

j D 1

m j

From Eq. (6), the minimal polynomial of A.µ/ can be written as

q[A.µ/; µ] D
mX

j D 0

° j .µ/A.µ/ j D 0 (7)

where the term

°0.µ/ D
dY

j D 1

[¡¸ j .µ/]m j 6D 0

for any realization of µ because we have assumed that the random
matrixA.µ/ is nonsingular.Hence,the inverseofA.µ/ canbewritten
as

A.µ/¡1 D ¡
1

°0.µ/

m ¡ 1X

j D 0

° j C 1.µ/A.µ/ j (8)

It can be clearly seen from the preceding equation that the inverse
of a nonsingular random matrix lies in the space spanned by the
terms of the minimal random polynomial.This implies that the vec-
tor A.µ/¡1f.´/ belongs to the stochastic Krylov subspace de� ned
hereafter.

De� nition1:The stochasticKrylovsubspaceof orderm is de� ned
as

Km[A.µ/; f .´/]

D spanf f .´/; A.µ/ f .´/; A.µ/2 f .´/; : : : ; A.µ/m ¡ 1 f .´/g
where A.µ/ 2 C n £ n is a random matrix, and f .´/ 2 C n is either a
deterministic or a random vector.

The dimensionof the Krylov subspace required to compute high-
quality approximations will depend on the degree of the minimal
polynomialof the random matrix. This observationcan be formally
stated as follows.

Theorem 1: If the minimal random polynomial of a nonsin-
gular random square matrix A.µ/ has degree m, then the solu-
tion to A.µ/u.µ/ D f.´/ lies in the stochastic Krylov subspace
Km[A.µ/; f .´/].

Hence, in principle, Km[A.µ/; f .´/] provides a stochastic sub-
space, by the use of which an approximation for the random vector
A.µ/¡1 f .´/ can be computed. However, Theorem 1 implies that in
practice a large number of basis vectors would be required to com-
pute accurate results because for many cases we expect the degree
of the minimal polynomial m to be close to n. To achieve accurate
results using few basis vectors,we need to transform the coef� cient
matrix A.µ/ such that the probabilitydensity functions(PDFs) of its
eigenvaluesshow a high degree of overlap. Thus, from a numerical
viewpoint, the degreeof the minimal polynomialof the transformed
coef� cientmatrixwill bemuchsmallercomparedto n. We shownext
how this can be achieved by employing a preconditioningscheme.

B. Preconditioned Stochastic Krylov Subspace
Based on the preceding discussion, a straightforward choice of

basis vectors would be the mth-order stochastic Krylov subspace
Km[A.µ/; f .´/]. This suggests that the stochastic basis vectors can
be computed as

Ã0 D f .´/; Ã1 D A.µ/ f.´/; : : : ; Ãm ¡ 1 D A.µ/m ¡ 1 f .´/

(9)

However, as mentioned earlier, the number of stochastic basis vec-
tors required to compute accurate approximations of the solution
vector could be as high as n. For the sake of computational ef� -
ciency, it is desirable to use only a small number of basis vectors. In
order to arrive at a richer stochastic subspace, we employ a precon-
ditioningapproachto transformthe coef� cientmatrix. In the present
study, we choose the deterministic matrix hA.µ/i¡1 D L¡1 as the
preconditioner.(A good choice of preconditioningmatrix M is one
for which MA is close to an identity matrix or a matrix with highly
clustered eigenvalues.) This choice of the preconditioning matrix
would reduce the degree of the minimal polynomial of the trans-
formed coef� cient matrix. In other words, because the eigenvalues
ofL¡1A.µ/ will be clusteredaroundunityfor small stochasticity,the
PDFs of its eigenvalueswill have a high degree of overlap. This, in
turn, would allow us to compute high-qualityapproximationsusing
a small number of basis vectors.

The left preconditionedversion of Eq. (4) can be written as

L¡1A.µ/u.µ/ D L¡1 f .´/ (10)

Note that the solutionsof Eqs. (10) and (4) are the same. Before pro-
ceeding further, we shall brie� y illustrate the relationship between
the left preconditioned stochastic Krylov subspace (when L¡1 is
used as a preconditioner) and the Neumann series given hereafter,

Qu.µ/ D
1X

i D 0

.¡1/i

³
L¡1

pX

i D 1

µi P i

í

L¡1

³
fo C

qX

i D 1

´i fi

´
(11)

By the use of the analysispresented in a recent study,16 it can shown
that for this particular choice of the preconditioner,the terms of the



1656 NAIR AND KEANE

Neumann series also span the left preconditionedstochasticKrylov
subspace, that is,

Km[L¡1A.µ/; L¡1f .´/] D Km

"

L¡1
pX

i D 1

µi P i ; L¡1f .´/

#
(12)

The implication of the preceding result is that using the precondi-
tioner L¡1 is equivalent to using the terms of the Neumann series as
stochasticbasis vectors. It can be readily seen that each basis vector
in the preconditioned stochastic Krylov subspace (except for the
� rst one) can be written as a vector of homogeneous random poly-
nomials. To simplify our notation, we shall now adopt the Einstein
conventionthatwhenever the same indexappearstwice in an expres-
sion, summation with respect to that index over its range is implied.
The � rst three basis vectors can be explicitly written as a function
of µ and ´ as

Ã0.µ/ D L¡1 fo C ´i L¡1 fi (13)

Ã1.µ/ D µi

¡
b1

i C ´ j c1
i j

¢
(14)

Ã2.µ/ D µi1 µi2

¡
b2

i1i2
C ´i3 c2

i1i2i3

¢
(15)

where b1
i D L¡1 P i L¡1 fo , c1

i j D L¡1 P i L¡1 f j , b2
i1i2

D L¡1 P i1 L¡1

P i2 L
¡1 fo, and c2

i1 i2i3
D L¡1 P i1 L¡1 P i2 L¡1 fi3 2 C n are determin-

istic vectors.
A general expression for the kth stochastic basis vector can be

written as

Ãk .µ/ D µi1 µi2 ; : : : ; µik

¡
bk

i1i2;:::;ik
C ´ik C 1 ck

i1i2;:::;ik C 1

¢
(16)

where bk
i1i2;:::;ik

D L¡1 P i1 L¡1 P i2 ; : : : ; L¡1 P ik L¡1fo and ck
i1i2 ;:::;ik C 1

D L¡1 P i1 L
¡1 P i2 ; : : : ; L¡1 P ik L¡1fik C 1 2 C n are deterministic

vectors.
Because the matrices L and P i are expected to be highly sparse,

the deterministic tensors bk and ck can be ef� ciently computed in a
recursive fashion by solving the deterministic system of equations

Lbk C 1
i1i2 ;:::;ik C 1

D P ik C 1 bk
i1i2 ;:::;ik ; Lck C 1

i1i2 ;:::; ik C 2
D 5ik C 2 c

k
i1 i2;:::;ik C 1

(17)

If the decomposed form of the matrix L is available, then Eq. (17)
can be readily solved using forward and backward substitutions.
However, note that computation of the higher-order basis vectors
spanning the preconditionedstochasticKrylov subspace inevitably
leads to an exponential increase in memory requirements, which
could potentiallybecome prohibitive for systems with a large num-
ber of DOF and random variables. One way to reduce the memory
requirements would be to neglect the interaction terms in the ba-
sis vectors of order greater than two. For example, the fourth basis
vector may be rewritten as

Ã3.µ/ D µ 3
i

¡
b3

i C ´ j c3
i j

¢
(18)

where b3
i D L¡1 P i L¡1 P i L¡1 P i L¡1fo and c3

i j D L¡1 P i L¡1 P i

L¡1 P i L¡1f j 2 C n are deterministic vectors. By the use of the sim-
pli� ed basis vectors of the form shown in Eq. (18), the memory re-
quirements and the computational complexity can be signi� cantly
reduced. However, in the numerical studies presented here, we ex-
actly compute the terms of the preconditioned stochastic Krylov
subspace without resorting to any simpli� cation.

C. Basis Vectors for Stochastic Structural Dynamics
The procedure described earlier cannot be ef� ciently applied to

compute the basis vectors for stochasticstructuraldynamic analysis
problems. This is primarily because a system of random equations
must be solved at each excitation frequency of interest, or at each
time step. For the sake of simplicity,we shall considerhere the case
involving frequency-domain analysis of a proportionally damped
stochasticstructuralsystem.The procedurepresentedcan be readily
extended to time-domain analysis.

For frequency-domain analysis, the deterministic and random
components of the coef� cient matrix A.µ/ can be de� ned as

L.!/ D .1 C j³1!/Ko ¡
¡
!2 ¡ j³2!

¢
Mo (19)

P i .!/ D .1 C j³1!/Ki ¡
¡
!2 ¡ j³2!

¢
Mi (20)

where ! is the excitation frequency of interest, ³1 and ³2 are the
proportional damping coef� cients de� ned earlier in Sec. II, and
j D

p
¡1. Note that the other matrices appearing in Eqs. (19) and

(20) have been de� ned earlier in Sec. II.
If the stochastic basis vectors de� ned earlier are to be computed

at each excitation frequency of interest !, then the complex matrix
L.!/ has to be repeatedly inverted. This is because an independent
set of stochastic basis vectors are used to compute the statistics
of the response at each excitation frequency. This may lead to a
signi� cant increase in the computational cost if the response at a
large number of frequency points is to be computed. To reduce the
computationalcost, we � rst solve for the left and right eigenvectors
corresponding to the k lowest eigenvalues of the generalized de-
terministic eigenvalueproblem KoÁ D ¸MoÁ. Let K 2 C k £ k denote
the diagonal matrix of eigenvalues and U 1 and U 2 2 C n £ k denote
the matrix of left and right eigenvectors, respectively.

From Eq. (17), it can be observed that the tensors used in the
stochastic basis vector representation can be computed by solving
a deterministic system of equations of the form

L.!/x1.!/ D P i .!/x2.!/ (21)

For ef� ciency reasons, we approximately solve Eq. (21) using the
modal transformationx1.!/ D U 2q.!/, where q.!/ 2 C k . Note that
this approximationwas originallysuggestedby Nair and Keane17 in
the context of dynamic reanalysis.Hence, by the use of the property
of biorthogonalityof the eigenvectors, the solution of Eq. (21) can
be approximated as

x1.!/ D U 2

£
K ¡ !2Ik C j!.³1 K C ³2Ik/

¤¡1
U ¤

1 P i .!/x2.!/ (22)

where Ik 2 R k £ k is the identity matrix. Because the matrix to be
inverted in Eq. (22) is diagonal, the basis vectors can be ef� ciently
computed. Furthermore, the accuracy of the approximation can be
improved by increasing k or by employing a modal acceleration
scheme.

D. Remarks
From Eqs. (16) and (5), it can be seen that the � nal solution turns

out to be a vector of random polynomials. In particular, when the
basis vectors are computed by expanding the coef� cient matrix us-
ing a Taylor series, the basis vectors can be interpretedas the terms
of the Taylor series for the solution vector. Note that this connec-
tion arises only if the matrix L¡1 is used as the preconditioner.It is
tempting here to draw connections between SRBMs and perturba-
tion methods. However, there is a fundamental difference between
these two classesof methods.First, perturbationmethodshave a lim-
ited radius of convergence due to which they may fail to converge
when the coef� cientsof variationof µi are large. In contrast,SRBMs
represent a physics-basedstochastic analysis approach because the
undetermined coef� cients in Eq. (5) are computed by ensuring that
the governing algebraic equation (4) is satis� ed in some sense; see
Sec. IV. Furthermore, due to Theorem 1, SRBMs can theoretically
convergence to the exact solution, provided a suf� cient number of
basis vectors is used.Also note that the terms of the Neumann series
were earlier used with a great degree of success as basis vectors for
static structural reanalysis by Kirsch.18 We discuss next the imple-
mentation aspects of the Bubnov–Galerkin scheme for stochastic
problems and outline some of its theoretical properties.

IV. Stochastic Subspace Projection
In this section,we present variants of the Bubnov–Galerkin (BG)

scheme for computing the undeterminedcoef� cients in the stochas-
tic reduced basis representation.The � rst step in the BG scheme is
to formulate a stochastic residual error vector of the form

r.µ/ D A.µ/W .µ/».µ/ ¡ f.´/ (23)
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The BG scheme is an orthogonal projection technique, which en-
forces the condition r.µ/ ? W .µ/. To implement this condition,we
consider the following de� nitions for orthogonality between two
random vectors.

De� nition 2: Two random vectors x1.µ/ and x2.µ/ 2 C n

are orthogonal in the Hilbert space of random variables if
hx¤

1.µ/x2.µ/i D 0.
De� nition 3: Two random vectors x1.µ/ and x2.µ/ 2 C n are

orthogonal with probability one if P[x¤
1.µ/x2.µ/ D 0] D 1.

The reader is referred to Ghanem and Spanos2 for a more formal
review of the origins of de� nition 2. De� nition 3 is a probabilistic
interpretation of the de� nition of orthogonality between two de-
terministic vectors, which suggests that ».µ/ must be computed
by solving the reduced-order system random algebraic system of
equations

QA.µ/».µ/ D Qf .µ; ´/ (24)

where QA.µ/ D W ¤.µ/A.µ/W .µ/ 2 C .m C 1/ £ .m C 1/ and Qf .µ; ´/ D
W ¤.µ/ f .´/ 2 C m C 1 are the reduced random coef� cient matrix and
RHS, respectively. As shown later, the random matrix QA.µ/ must
be symbolically inverted to ensure that for each realizationof µ and
´ Eq. (24) holds. This is readily possible only when two or three
basis vectors are used. A more practical approach to this problem
is to employ simulation schemes for computing the statistics of the
undeterminedcoef� cients. However, we will not pursue this further
here.

Now consider the case when de� nition 2 is employed to enforce
the conditionr.µ/ ? W .µ/. Then, the undeterminedcoef� cients turn
out to be deterministic scalars, which are computed by solving the
ensemble averaged linear algebraic system of equations

h QA.µ/i» D h Qf .µ; ´/i (25)

It can be readily shown that Eq. (25) is a zero-order approximation
of Eq. (24). To show this, let us � rst approximate the solution of
Eq. (24) using the � rst term of the Neumann series, that is, a zero-
order approximation,which gives

h QA.µ/i O» D Qf .µ; ´/ (26)

Clearly, if the RHS of Eq. (26) is replaced by its ensemble average,
then the preceding equationbecomes equivalent to Eq. (25). Hence,
we refer to Eqs. (25) and (24) as the zero-order and the exact BG
scheme, respectively. We present next implementation details of
both of these variants of the BG scheme.

A. Zero-Order BG Scheme
The undetermined coef� cients in the reduced basis are evaluated

here such that the stochastic residual error r.µ/ is orthogonal to
W .µ/ in the sense of de� nition 2, that is,

hW ¤.µ/r.µ/i D 0 (27)

Equation (27) leads to a deterministicmatrix system of equationsof
dimension .m C 1/ for the coef� cient vector ». This formulation is
henceforth referred to as SRBM-BG0 to indicate that the zero-order
BG scheme is used for stochastic subspace projection. The order
of the approximation is considered to be equal to m, when m C 1
basis vectors are used. The system of equations to be solved for the
coef� cient vector » 2 C m C 1 can be written as
"

hW ¤.µ/LW .µ/i C
pX

i D 1

hµi W
¤.µ/ P i W .µ/i

#

»

D

D
W ¤.µ/

³
fo C

qX

i D 1

´i fi

É
(28)

The preceding equation can be rewritten in a compact form as

[hLR .µ/i C h P R.µ/i]» D h Qf.µ; ´/i (29)

where hLR .µ/i and hP R.µ/i 2 C .m C 1/ £ .m C 1/ are deterministic
matrices and h Qf .µ; ´/i 2 C m C 1 is the deterministic reduced RHS.
These ensemble-averagedreduced-orderterms can be readily com-
puted using the joint statistics of µ and ´. General expressions for
the elements of these terms are presented in Appendix A. Note that
these expressionscan be simpli� ed when µ and ´ are jointly Gaus-
sian, or when the interaction terms in the basis vectors of order
greater than two are assumed to be zero as discussed earlier in Sec.
III.B. These allow the computation of the deterministic coef� cient
vector », which we may then use in conjunction with Eq. (5) to
arrive at an explicit expression for Ou.µ/.

B. Exact BG Scheme
In contrast to the earlier formulation, here we aim to enforce the

condition that the stochastic residual error vector r.µ/ is orthogonal
to the approximating space W .µ/ with probability one. In the sense
of de� nition 3, this condition can be written as

P[W ¤.µ/r.µ/ D 0] D 1 (30)

It can be seen that Eq. (30) will be satis� ed only when ».µ/ is
computed as

».µ/ D

"
W ¤.µ/

³
L C

pX

i D 1

µi P i

´
W .µ/

#¡1

£ W ¤.µ/

³
fo C

qX

i D 1

´i fi

´
(31)

Hence, to achieve an explicit expression for ».µ/, we will have to
invert symbolicallya randommatrix of dimension .m C 1/. This can
be readily carried out for small values of m. Our earlier experience
suggests that generally two or three basis vectors are suf� cient to
ensure good approximations for moderate coef� cients of variation
of µi . Consider, for example, the � rst-order SRBM where u.µ/ is
approximated using two basis vectors as shown:

Ou.µ/ D »0.µ/

³
L¡1fo C

qX

i D 1

´i L¡1 fi

´
C »1.µ/

£
pX

i D 1

µi

³
b1

i C
qX

j D 1

´ j c1
i j

´
(32)

The corresponding 2 £ 2 matrix system of equations to be solved
for ».µ/ can be written as

[LR.µ/ C P R.µ/]».µ/ D Qf .µ; ´/ (33)

Explicit expressions for LR.µ/, P R .µ/, and Qf .µ; ´/ can be readily
derived in terms of the random variables (see Appendix B). These
explicit expressions can be used to compute the random functions
»0.µ/ and »1.µ/. Similar equations can also be derived for the case
when three basis vectors are used. The use of symbolic computation
software is expected to alleviate the tediousness of the derivation
greatly. Furthermore, it is expected that the explicit expressions for
the reduced-order random matrices can be simpli� ed by replacing
terms of order greater than three by their ensemble averages with-
out signi� cant loss of accuracy. In summary, the exact BG scheme
leads to an explicit but complicatedexpressionfor the responsepro-
cess. The implication of this on the computational procedure for
calculating the response statistics is discussed later in Sec. V.

C. Theoretical Properties
The zero-orderBG scheme has a numberof interestingproperties

becauseit is anorthogonalprojectionscheme.For example,consider
the case when the coef� cientmatrix A.µ/ is Hermitianpositivede� -
nite. Furthermore, let Km denote the stochasticsubspacespannedby
the set of orthogonalbasis vectorsÃ1.µ/; Ã2.µ/; : : : ; Ãm .µ/. (Note
that an orthogonal set of basis vectors spanning the preconditioned
stochastic Krylov subspace can be computed using the stochastic
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version of Arnoldi’s method as presented by Nair.19 ) Let us � rst
write the zero-orderBG condition as

hfA.µ/ Ou.µ/ ¡ f .´/g¤Ãi .µ/i D 0; 8Ãi .µ/ 2 Km (34)

By the substitution of f.´/ D A.µ/u.µ/, the preceding condition
becomes

hf Ou.µ/ ¡ u.µ/g¤A¤.µ/Ãi .µ/i D 0; 8Ãi .µ/ 2 Km (35)

From the preceding equation, it can be seen that the BG0 scheme
ensures that the difference between the exact and the approximate
solution is A orthogonal to the approximating space Km . Now, by
the use of the elementary properties of orthogonal projectors (see
Chapter 1 in the book by Saad20), it can be shown that Eq. (35) is
the necessary and suf� cient condition for Ou.µ/ to be a minimizer
of the error function hf Ou.µ/ ¡ u.µ/g¤Af Ou.µ/ ¡ u.µ/gi. This result,
which establishes the optimality of the SRBM-BG0 scheme, can be
stated as follows.

Theorem 2: Let Ou.µ/ D W .µ/» be a stochastic reduced ba-
sis approximation to the solution of A.µ/u.µ/ D f .´/, where
A.µ/ 2 C n £ n is a random Hermitian positive de� nite matrix, u.µ/
and f.´/ 2 C n are random vectors, W .µ/ 2 C n £ m is a matrix of
stochastic basis vectors, and » 2 C m is a vector of undetermined
coef� cients. If the coef� cient vector » is computed by imposing
the condition A.µ/W .µ/».µ/ ¡ f.´/ ? W .µ/, then the following
deterministic error function is minimized:

1m
A D hfu.µ/ ¡ Ou.µ/g¤A.µ/fu.µ/ ¡ Ou.µ/gi (36)

where 1m
A denotes the A norm of the error.

An important corollary of Theorem 2 is that when the number of
basis vectors in the SRBM-BG0 scheme is increased, the A norm of
the error will never increase, that is, 1i C 1

A · 1i
A , where 1i C 1

A and
1i

A denote the A norm of the error using i C 1 and i basis vectors,
respectively.This implies that the A norm of the error will converge
in a mean-square sense. Note that a similar result can be proved for
the L2 norm of the residual for non-Hermitian coef� cient matrices,
whenan obliquestochasticsubspaceprojectionscheme is employed
to compute the undeterminedcoef� cients. (The reader is referred to
Appendix A in Ref. 19 for an overview of the stochastic Petrov–

Galerkin scheme.) Even though we have not formally established
such results for the exact BG scheme at the time this paper was
written, it is conjectured that the A norm of the error will converge
in probability for this scheme.

V. Computational Aspects of SRBMs
In summary, the main computationalsteps in SRBMs involve the

1) decomposition of a deterministic matrix to compute the precon-
ditioner, 2) recursive computationof the basis vectors, 3) stochastic
subspaceprojectionto compute the undeterminedcoef� cients in the
reduced basis, and 4) statistical postprocessingof the reduced basis
representation.It can be readily shown that SRBMs require O.pkq/
sparsematrix–vectormultiplicationsin additionto onedeterministic
analysis,where p and q denote the total numberof randomvariables
appearing in the coef� cient matrix and the RHS, respectively,and k
is the number of basis vectors. This implies that the computational
cost goes up exponentiallywith increase in the numberof basis vec-
tors. However, as is shown later via numerical studies, two or three
basis vectors are generally suf� cient to obtain accurate results for a
number of cases.

If the tensors in the basis vectors are explicitly computed, then
O.pk q/ n-dimensionalvectors are required to be stored in memory.
To reduce the memory requirements, the idea presented earlier in
Sec. III.B can be effectivelyused to simplify the basis vectors of or-
der greater than two. The memory requirements and computational
cost will consequentlyreduce to O.p2q/ n-dimensionalvectors and
sparse matrix–vector operations, respectively.

For the exact BG scheme, there is an additionalmemory require-
ment of O.pkq/ scalars if explicit expressionsfor the random func-
tions describingthe coef� cients of the reducedbasis are desired(see
Appendix B). Clearly, this could be prohibitive for systems with a
large number of random parameters. As discussed earlier, one way

to reducethis additionalmemory requirementwouldbe to replaceall
terms of order greater than three in the reduced-orderequations by
their ensemble averages, which will reduce the additional memory
requirement to O.p3q/. Furthermore, because most of the com-
putationally intensive steps in SRBMs involve independent sparse
matrix–vector operations, this class of algorithms is expected to
scale well on parallel computing architectures.

In considering the computation of response statistics, let us � rst
consider the case when the zero-order BG scheme is used for
stochastic subspace projection. This leads to a random polynomial
for the response process of the form

Ou.µ/ D
mX

i D 0

»i Ãi .µ/ (37)

Because the coef� cients »i are deterministic scalars, the mean and
covarianceof the responsecan be expressed in terms of the statistics
of the basis vectors as follows:

h Ou.µ/i D
mX

i D 0

»i hÃi .µ/i (38)

R Ou D hOu.µ/ Ou¤.µ/i D hW .µ/»»¤ W ¤.µ/i

D
mX

i D 0

mX

j D 0

»i »
¤
j hÃi .µ/Ã¤

j .µ/i (39)

Note that expectation operations in Eqs. (38) and (39) can be ana-
lytically carried out using the joint statistics of µi and ´i . (See, for
example, McCullagh21 and Chapter 4 of Ghanem and Spanos2 for a
detailed exposition on statistical analysis of random polynomials.)

The expressions for the mean and covariancematrix suggest that
the memory requirements can be signi� cantly reduced if no other
statistical quantities are to be computed. To achieve this, we may
� rst compute the coef� cients of the stochastic reduced basis using
the expressions in Appendix A, without explicitly computing the
tensors in the basis vector representation. Subsequently, the mean
and covariance of the response can be computed using Eqs. (38)
and (39). Clearly, this two-step procedure achieves a signi� cant
reduction in the memory requirements at the expense of increased
computations.Note that the need for explicitly computing the basis
vectors only arises if the response PDF is to be computed in the
postprocessingstage by sampling Eq. (37).

In contrast, for the exact BG scheme, the coef� cients of the re-
duced basis turn out to be highly nonlinear functions of the random
variables(AppendixB). Hence, analyticalsolutionsfor the statistics
of Ou.µ/ are not readily possible. Fortunately, sampling the reduced
basis representation involves only a few operations when p ¿ n.
In particular, the � rst- and second-orderSRBMs require O.p3/ and
O.p5/ operations,respectively.For problemswith a largenumberof
randomparameters,the operationcount can be reducedby replacing
the higher-order terms by their ensemble averages. Hence, Monte
Carlo integration techniques can be readily applied to compute the
response statistics ef� ciently.

In the context of reliabilityanalysis (for example, Wu22), SRBMs
allow the derivation of an explicit expression for the multidimen-
sional limit state curve. This potentially enables the ef� cient com-
putationof failureprobabilitieswithout resorting to � rst- or second-
order reliability approximations. In fact, the complete PDF of the
response may be computed by employing simulation schemes and
density estimation techniques.Alternatively, the maximum entropy
principle23 could be used to reconstruct the PDF of the solution
using the statistical moments computed using Eq. (37).

VI. Demonstration Examples
In this section, we apply SRBMs to some problems in structural

mechanics. MCS studies using exact structural analysis are con-
ducted to generate benchmark results, against which the various
approximatemethods are compared.We present results for the � rst-
and second-orderSRBMs, that is, using two and three basis vectors,
respectively. When the zero-order BG scheme is used to compute
the undetermined coef� cients in the reduced basis, the SRBM of
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order k is referred to as SRBMk-BG0, where k C 1 is the number
of basis vectors. Similarly, when the exact BG scheme is used, the
kth-order SRBM is referred to as SRBMk-BG. We compare the re-
sultscomputedusingSRBMs with thoseobtainedusingthe � rst- and
second-orderNeumann expansionscheme, referred to as NEU1 and
NEU2, respectively. For examples 1 and 2, we also present results
for the � rst-order polynomial chaos scheme,2 referred to as PC1.

A. Example 1: Static Structural Analysis
The � rst example considered is a 10-bar truss structure (Fig. 1)

taken from Penmetsa et al.,24 where an approach based on Fourier
transforms was compared with various reliability analysis tech-
niques. In this problem, the cross-sectionalareas of all of the truss
members are modeled as uncorrelated Gaussian random variables
with mean 2.5 and standard deviation (STD) ¾µ . The value of ¾µ is
set at 0.3 and 0.5 for cases 1 and 2, respectively.For each case, MCS
using exact static analysis with a sample size of 300,000 is used to
generate benchmark results (henceforth referred to as exact MCS).
The results computed using SRBMs, the Neumann series, and the
� rst-order polynomial chaos are compared with these benchmark
results.

The average percentage errors in the mean and STD across all
of the DOF are shown in Figs. 2 and 3 for cases 1 and 2, respec-
tively. It can be seen that the Neumann series converge very slowly
to the benchmark results, particularly for the STD of the displace-

Fig. 1 Truss structure, 10 bars.

Fig. 2 Average errors in mean and STD of displacement for example 1, case 1, ¾µ = 0:3.

ment. In contrast,SRBMs convergemore rapidly to the exact results
when the number of basis vectors is increased.PC1 generally tends
to give results that are comparable to NEU2. Note that, for this
particular problem (with eight DOF and 10 random variables), ap-
plication of PC1 leads to the requirement of solving an 88 £ 88
deterministic system of equations. Given this, it is remarkable that
SRBM1-BG0 gives results of similar accuracy by solving a 2 £ 2
deterministicsystem of equations.Also note that SRBM2-BG gives
exact results for the � rst two statistical moments for both cases. In
summary, the results support the theoretical evidence for the opti-
mality of the preconditionedstochastic Krylov subspace presented
earlier.

Note that the size of the deterministic system of equations to be
solved for the undeterminedcoef� cients grows linearly for SRBMs.
In contrast, the growth in dimensionality for the polynomial chaos
scheme is signi� cantly higher; for example, the second-orderpoly-
nomial chaos scheme results in a 528 £ 528 system of equationsfor
the simple example problem considered here.

B. Example 2: Structural Reliability Analysis
In this section, we present results for reliability analysis of the

10-bar truss structure considered in example 1. As in Ref. 24, the
cross-sectional areas of all of the truss members are modeled as
uncorrelated Gaussian random variables, with mean 2.5 and STD
0.5. The reliability analysis problem involves computing the multi-
dimensional integral

P f D
Z

g.a/ > 1:8

fa.a/ da (40)

where P f denotes the probability of structural failure, a 2 R 10 de-
notes the vector of random cross-sectionalareas and fa.a/ denotes
its joint PDF, and g.a/ is the limit state function that is de� ned for
this problem as g.a/ D maxfu.µ/g, where u.µ/ 2 R 8 denotes the
random displacementvector. Clearly, it would be preferable to sim-
plify SRBMs to compute P f analytically. However, an analytical
expressionfor P f can be readily derivedonly when SRBM1-BG0 is
used. In the present study, we use a simulation scheme to compute
P f because SRBMs provide an explicit expression for the displace-
ment vector.

We compare SRBMs with various approximate reliability anal-
ysis methods, the performances of which were studied in Ref. 24.
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We generated benchmark results using a sample size of 300,000
to compute the probability of failure using exact static analysis as
well as the SRBMs (except for SRBM1-BG0 and PC1, where P f

can be computed analytically). The percentage errors in P f com-
puted using the � rst- and second-orderSRBMs are compared with
other techniquesin Table 1. We observed that our benchmark result
(MCS1) is around 1.8% lower than that reported in Ref. 24 (re-
ferred to as MCS2 in Table 1). Hence, we also show in parentheses
the percentage error of all the methods vis-á-vis MCS2.

Note that except for the SRBMs and PC1, all other techniques
compute as a � rst step the most probable point (MPP) of failure
using an iterative scheme, and then constructan approximatemodel

Table 1 Comparison of methods for reliability analysis
of a 10-bar truss structure

Method P f Error, %

MCS1 0.1384 ——
SRBM1-BG 0.1358 ¡1.88 (¡3.76)
SRBM2-BG 0.1383 0.0 (¡1.94)
SRBM1-BG0 0.1150 ¡16.9 (¡18.8)
SRBM2-BG0 0.1399 2.74 (0.85)
PC1 0.1170 ¡15.44 (¡17.1)
MCS2a 0.1411 ——
FFTa 0.1326 ¡4.19 (¡6.04)
FORMa 0.0862 ¡37.72 (¡38.90)
BREITUNGa 0.0907 ¡34.47 (¡35.71)
TVEDT2a 0.0951 ¡31.29 (¡32.61)
TVEDT3a 0.0966 ¡30.20 (¡31.53)

aResults for these methods have been taken from Penmetsa et al.24

Fig. 3 Average errors in mean and STD of displacement for example 1, case 2, ¾µ = 0:5.

Fig. 4 Cantilevered network of 20 Euler–Bernoulli beams.

around it. In contrast, the SRBMs circumvent the MPP computation
step by constructing a global model using a set of stochastic basis
vectors. In spite of this, it can be readily seen from Table 1 that the
SRBMs give more accurate results as compared to the other state-
of-the-art reliability analysis techniquesconsideredhere. Also note
that SRBM1-BG0 (which is a � rst-ordermethod) givesbetter results
than the FORM and the second-order reliability methods, referred
to as BREITUNG, TVEDT2, and TVEDT3. Clearly, the accuracy
of the SRBMs could have been improved even further by using a
preconditioningmatrix at the MPP (i.e., the inverse of the stiffness
matrix computed at this point) for computing the basis vectors. Fur-
ther work is also required to introduce simplifying assumptions for
analytically computing P f .

C. Example 3: Frequency Response Analysis
In this section, we present results for frequency response analy-

sis of a cantileverednetwork of 20 Euler–Bernoulli beams (Fig. 4),
each with random Young’s modulus and mass density. The struc-
ture is modeled using four elements for each beam member, which
leads to a � nite element model with 210 DOF. The axial and � exu-
ral rigidity of each structural member are modeled as Eo A.1 C µi )
and Eo I .1 C µi ), i D 1; 2; : : : ; 20, respectively.The mass density of
each member is modeled as ½ D ½o.1Cµi /, i D 21; 22; : : : ; 40. Note
that µi , i D 1; 2; : : : ; 40, are considered as uncorrelated zero-mean
Gaussian random variables with STD 0.05, whereas Eo A D
6:987 £ 106 N, Eo I D 1:286 £ 103 Nm2 , and ½o D 2:74 kg/m.

As shown in Fig. 4, the structure is subjected to transverse har-
monic excitation at joint 1. The transverse component of the dis-
placement response at joint number 9 is studied in the region of
0–500 Hz at 150 equally spaced points. Results are computed for
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Fig. 5 Comparison of mean displacement response computed using the � rst-order methods for example 3.

Fig. 6 Comparison of STD of displacement response computed using the � rst-order methods for example 3.

SRBM1-BG, SRBM2-BG, NEU1, NEU2, and exact MCS using a
sample size of 10,000.

The mean and STD of the displacementresponsecomputedusing
the approximatemethodsare comparedwith benchmarkresultsgen-
eratedusingMCS andexactstructuraldynamicanalysisin Figs. 5–8.
It can be clearly seen that SRBMs give signi� cantly better approx-
imations than the Neumann series. In particular, SRBM2-BG gives
accurate approximations for both statistical moments of the dis-
placement response. The accuracy of SRBMs for this problem is

remarkable considering that Theorem 2 does not strictly hold for
complex symmetric matrices. It is expected that the accuracy of
SRBMs can be improved by employing an oblique stochastic pro-
jection scheme, which, as mentioned in Sec. IV.C, can be shown to
be convergent for non-Hermitian matrices.

It can be observed that NEU2 gives more erroneous results than
NEU1 forbothstatisticalmomentsof the frequencyresponse,partic-
ularly near resonance frequencies.This indicates that the Neumann
series diverges for this problem. However, the preconditioned
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Fig. 7 Comparison of mean displacement response computed using the second-order methods for example 3.

Fig. 8 Comparison of STD of displacement response computed using the second-order methods for example 3.

stochasticKrylov subspace (or the terms of the Neumann series) do
provide a rich set of basis vectors for approximating the response
process.Hence,usingthis set of basisvectors,the responsestatistical
moments computedusing the SRBMs are up to ordersof magnitude
more accurate than those derived from the Neumann series.

VII. Summary
In this paper, we have presented SRBMs for solving linear ran-

dom algebraic systems of equations, such as those arising from

discretizationof linear stochastic PDEs in space, time, and the ran-
dom dimension.We introducedthe idea of representingthe solution
vectoras a linear combinationof stochasticbasis vectorswith unde-
terminedcoef� cients.A theoreticaljusti� cation for employingbasis
vectorsspanningthepreconditionedstochasticKrylovsubspacewas
outlined. Subsequently, we presented stochastic variants of the BG
scheme for computing the undeterminedcoef� cients in the reduced
basis. It is shown that the A norm of the error converges for these
projection schemes, when the number of basis vectors is increased.



NAIR AND KEANE 1663

We also closely examined the computational aspects of SRBMs.
In particular,an ef� cient schemewas presentedfor recursivelycom-
puting basis vectors spanning the preconditionedstochasticKrylov
subspace for static and dynamic structural analysis. Some ideas
for reducing the computational cost and memory requirements of
SRBMs were also discussed. Similar to the polynomial chaos pro-
jection scheme,2 a major advantage of SRBMs is that an explicit
representationof the responsequantitiesin terms of the randomsys-
tem parameters can be achieved. As a result, the response statistics
can be ef� ciently computed in the postprocessing stage. However,
because SRBMs lead to a reduced-order system of equations, our
approach is expected to be computationallymore ef� cient than the
polynomial chaos projection scheme, which leads to a system of
equations with increased dimensionality.

Numerical studies were presented for static and dynamic analy-
sis of randomly parameterized structural systems. The results ob-
tained using SRBMs have been compared with the Neumann se-
ries and other relevant techniques in the literature. We demonstrate
that SRBMs converge much faster to the exact statistics than the
Neumann series. For some of the cases, the response statistical
moments computed using SRBMs are up to 10 times more accu-
rate compared to the Neumann series. The results also indicate that
SRBMs can provide accuracy that is comparable to, or better than,
the polynomial chaos scheme at a much lower computational cost.
This suggests that SRBMs can be employedas an ef� cient solver in
the SSFEM scheme of Ghanem and Spanos.2

The present research has important rami� cations from a theoret-
ical point of view. From the theoretical perspective, we have high-
lighted how existing results in numerical linear algebra on Krylov
subspace methods24 for deterministic systems can be leveraged to
devise SRBMs. In numerical linear algebra, methods based on the
Krylov subspace have a rich history spanning more than 50 years,
and they continue to be an area of extensive research. Hence, the
connectionsmade in this paper provideus access to a sound theoret-
ical foundation from which new numerical methods for stochastic
problems may be developed.

As computational experience accumulates on a variety of prob-
lem domains, we hope to gain a deeper insight into the theoretical
and computational properties of SRBMs. This is expected to aid
us in the task of devising alternative choices of preconditionersor
basis vectors, which may lead to signi� cant reductions in the com-
putationalcost and memory requirements.It also remains to be seen
whether employing an oblique stochastic projection scheme19 will
improve the accuracy of the results for stochastic structuraldynam-
ics. Ideas on extending SRBMs to nonlinear stochastic systems,
algebraic random eigenvalue problems,19 and a posteriori error es-
timation schemes19 merit further investigation. It is hoped that the
formulationspresentedin this paperwill acceleratethe development
of ef� cient stochastic subspace projection schemes for tackling a
wider class of problems in stochastic mechanics.

Appendix A: Reduced-Order Terms
in SRBM–BG0 Scheme

The expressions for the deterministic reduced-order matrices
which arise in the kth-orderSRBM using the zero-orderBG scheme
[see Eq. (29)] are summarizedhereafter.hLR .µ/i 2 C .m C 1/ £ .m C 1/ is
a deterministicmatrix, a typical element of which can be computed
as
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h P R.µ/i 2 C .m C 1/£.m C 1/ is a deterministicmatrix that can be com-
puted as

h P R.k; l/i D
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Similarly,a typicalelementof h Qf .µ; ´/i 2 C m C 1 canbe evaluated
as
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In the notation used here, repeated indices indicate summation
with respect to that index over its range. Given the joint statistics
of µi and ´i , the expectation operations appearing in the preced-
ing equations can be readily carried out. Hence, the undetermined
coef� cients in the stochastic reduced basis can be computed as
» D [hLRi C hP R i]¡1h Qf i. Note that the expressions for the reduced-
order matrices can be greatly simpli� ed if the vectors µ and ´ are
modeled as zero-mean uncorrelatedGaussian random variables. In
fact, such a simpli� cation was used to develop a library of sub-
routines for the numerical studies presented here. An even greater
simpli� cation results if the interaction terms in the basis vectors of
order greater than two are assumed to be zero (see Sec. III.B).

Appendix B: Reduced-Order Terms
in SRBM–BG Scheme

For the sake of notational simplicity, consider the case when the
RHS in Eq. (4) is deterministic.Then the reduced-ordercoef� cient
matrix and the RHS for the � rst-order SRBM, which uses the exact
BG scheme [see Eq. (33)], can be written using repeated index
notation as

LR .µ/ C P R .µ/ D

"
t¤oLto C µi ai µi bi C µi µ j Ci j

µi
Qbi C µi µ j

QCi j µi µ j Di j C µi µ j µk Ei jk

#

(B1)

Qf .µ; ´/ D
µ

t¤o fo

µi fi

¶
(B2)

where to D L¡1fo 2 C n , ai D t¤o P i to , bi D t¤
oLb1

i , Ci j D t¤
o P i b1

j , Qbi D
.b1

i /
¤Lto, QCi j D .b1

j /
¤ P i to, Di j D .b1

i /¤Lb1
j , Ei jk D .b1

i /¤ P j b1
k , and

fi D .b1
i /¤fo.

By the use of Eqs. (B1) and (B2), an explicit expression can be
derivedfor the randomfunctionsin the reducedbasis representation.
Similar expressionscan also be derivedwhen threebasis vectors are
used in the reduced basis.
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